The valence fluctuations which are related to the charge disproportionation of phosphorous ions P 4+ + P 4+ → P 3+ + P 5+ are the origin of ferroelectric and quantum paraelectric states in Sn(Pb)2P2S6 semiconductors. They involve recharging of SnPS3 or PbPS3 structural groups which could be represented as half-filled sites in the crystal lattice. Temperature-pressure phase diagram for Sn2P2S6 compound and temperature-composition phase diagram for (PbySn1−y)2P2S6 mixed crystals, which include tricritical points and where a temperature of phase transitions decrease to 0 K, together with the data about some softening of low energy optic phonons and rise of dielectric susceptibility at cooling in quantum paraelectric state of Pb2P2S6 are analyzed by GGA electron and phonon calculations and compared with electronic correlations models. The anharmonic quantum oscillators model is developed for description of phase diagrams and temperature dependence of dielectric susceptibility.
External stimuli enabling either a continuous tuning or an abrupt switching of the basic properties of materials that are utilized in various industrial appliances could significantly extend their range of use. The key characteristics of semiconductors are basically linked to their electronic and optical properties. In this study, we experimentally demonstrated that two kindred wide-band-gap semiconductors, ferroelectric SnPSe and paraelectric PbPS, which are commonly used in optical technologies, have remarkably different and unusual responses in their electronic band structures to applied moderate pressures. The electrical resistance of SnPSe smoothly decreased with pressure by about eight orders of magnitude to 10 GPa, thereby suggesting a progressive shrinkage in its band gap; whereas, the resistance of PbPS was only insignificantly lowered with pressure to 20 GPa. By means of Raman spectroscopy, we observed several distinct crossovers in the compression behaviour of both crystals and attributed them to phase transitions. These Raman studies provided evidence for the metallization of SnPSe at 29 GPa and PbPS at 49 GPa. We inferred that, namely, the metal cations in these crystals control the pressure responses of their band structures and proposed that the other MPX compounds, those already known and those not yet reported (e.g., with M = Cu, In, Fe, Co, Mn, Cr, Ca, Sr, and Mg), could also exhibit the diverse and non-trivial pressure responses of their electronic band structures. Thus, our study has revealed the significant potential for the stress-related technologies of this poorly-studied class of materials, thereby stimulating both the synthesis and investigation of new members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.