A recently released voxel model quantifying aggregate resources of the Belgian part of the North Sea includes lithological properties of all Quaternary sediments and modelling-related uncertainty. As the underlying borehole data come from various sources and cover a long time span, data-related uncertainties should be accounted for as well. Applying a tiered data-uncertainty assessment to a composite lithology dataset with uniform, standardised lithological descriptions and rigorously completed metadata fields, uncertainties were qualified and quantified for positioning, sampling and vintage. The uncertainty on horizontal positioning combines navigational errors, on-board and off-deck offsets, and underwater drift. Sampling-gear uncertainty evaluates the suitability of each instrument in terms of its efficiency of sediment yield per lithological class. Vintage uncertainty provides a likelihood of temporal change since the moment of sampling, using the mobility of fine-scale bedforms as an indicator. For each uncertainty component, quality flags from 1 (very uncertain) to 5 (very certain) were defined, and converted into corresponding uncertainty percentages meeting the input requirements of the voxel model. Obviously, an uncertainty-based data selection procedure, aimed at improving the confidence of data products, reduces data density. Whether or not this density reduction is detrimental to the spatial coverage of data products, will depend on their intended use. At the very least, demonstrable reductions in spatial coverage will help to highlight the need for future data acquisition and to optimise survey plans. By opening up our subsurface model with associated data uncertainties in a public decision support application, policy makers and other end users are better able to visualise overall confidence and identify areas with insufficient coverage meeting their needs. Having to work with a borehole dataset that is increasingly limited with depth below the seabed, engineering geologists and geospatial analysts in particular will profit from a better visualisation of data-related uncertainty.Thematic collection: This article is part of the Mapping the Geology and Topography of the European Seas (EMODnet) collection available at: https://www.lyellcollection.org/cc/EMODnet
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.