We present reliable many-body calculations for the t-t(')-t('')-U Hubbard model that explain in detail the results of recent angle-resolved photoemission experiments on electron-doped high-temperature superconductors. The origin of the pseudogap is traced to two-dimensional antiferromagnetic spin fluctuations whose calculated temperature-dependent correlation length also agrees with recent neutron scattering measurements. We make specific predictions for photoemission, for neutron scattering, and for the phase diagram.
The conductivity of the two-dimensional Hubbard model is particularly relevant for hightemperature superconductors. Vertex corrections are expected to be important because of strongly momentum dependent self-energies. To attack this problem, one must also take into account the Mermin-Wagner theorem, the Pauli principle and crucial sum rules in order to reach nonperturbative regimes. Here, we use the Two-Particle Self-Consistent approach that satisfies these constraints. This approach is reliable from weak to intermediate coupling. A functional derivative approach ensures that vertex corrections are included in a way that satisfies the f sum-rule. The two types of vertex corrections that we find are the antiferromagnetic analogs of the Maki-Thompson and Aslamasov-Larkin contributions of superconducting fluctuations to the conductivity but, contrary to the latter, they include non-perturbative effects. The resulting analytical expressions must be evaluated numerically. The calculations are impossible unless a number of advanced numerical algorithms are used. These algorithms make extensive use of fast Fourier transforms, cubic splines and asymptotic forms. A maximum entropy approach is specially developed for analytical continuation of our results. These algorithms are explained in detail in appendices. The numerical results are for nearest neighbor hoppings. In the pseudogap regime induced by two-dimensional antiferromagnetic fluctuations, the effect of vertex corrections is dramatic. Without vertex corrections the resistivity increases as we enter the pseudogap regime. Adding vertex corrections leads to a drop in resistivity, as observed in some high temperature superconductors. At high temperature, the resistivity saturates at the Ioffe-Regel limit. At the quantum critical point and beyond, the resistivity displays both linear and quadratic temperature dependence and there is a correlation between the linear term and the superconducting transition temperature. A hump is observed in the mid-infrared range of the optical conductivity in the presence of antiferromagnetic fluctuations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.