India has experienced significant Land-Use and Land-Cover Change (LULCC) over the past few decades. In this context, careful observation and mapping of LULCC using satellite data of high to medium spatial resolution is crucial for understanding the long-term usage patterns of natural resources and facilitating sustainable management to plan, monitor and evaluate development. The present study utilizes the satellite images to generate national level LULC maps at decadal intervals for 1985, 1995 and 2005 using onscreen visual interpretation techniques with minimum mapping unit of 2.5 hectares. These maps follow the classification scheme of the International Geosphere Biosphere Programme (IGBP) to ensure compatibility with other global/regional LULC datasets for Remote Sens. 2015, 7 2403 comparison and integration. Our LULC maps with more than 90% overall accuracy highlight the changes prominent at regional level, i.e., loss of forest cover in central and northeast India, increase of cropland area in Western India, growth of peri-urban area, and relative increase in plantations. We also found spatial correlation between the cropping area and precipitation, which in turn confirms the monsoon dependent agriculture system in the country. On comparison with the existing global LULC products (GlobCover and MODIS), it can be concluded that our dataset has captured the maximum cumulative patch diversity frequency indicating the detailed representation that can be attributed to the on-screen visual interpretation technique. Comparisons with global LULC products (GlobCover and MODIS) show that our dataset captures maximum landscape diversity, which is partly attributable to the on-screen visual interpretation techniques. We advocate the utility of this database for national and regional studies on land dynamics and climate change research. The database would be updated to 2015 as a continuing effort of this study.
In this paper, the authors build a tree using both frequent as well as non-frequent items and named as Revised PLWAP with Non-frequent Items RePLNI-tree in single scan. While mining sequential patterns, the links related to the non-frequent items are virtually discarded. Hence, it is not required to delete or maintain the information of nodes while revising the tree for mining updated weblog. It is not required to reconstruct the tree from scratch and re-compute the patterns each time, while weblog is updated or minimum support changed, since the algorithm supports both incremental and interactive mining. The performance of the proposed tree is better, even the size of incremental database is more than 50% of existing one, while it is not so in recently proposed algorithm. For evaluation purpose, the authors have used the benchmark weblog and found that the performance of proposed tree is encouraging compared to some of the recently proposed approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.