The goal of the present work is a systematic study on an influence of a strain rate on the mechanical response and microstructure evolution of the selected titanium-based materials, i.e., commercial pure titanium, Ti-6Al-4V alloy with lamellar and globular microstructures produced via a conventional cast and wrought technology, as well as Ti-6Al-4V fabricated using blended elemental powder metallurgy (BEPM). The quasi-static and high-strain-rate compression tests using the split Hopkinson pressure bar (SHPB) technique were performed and microstructures of the specimens were characterized before and after compression testing. The strain rate effect was analyzed from the viewpoint of its influence on the stress–strain response, including the strain energy, and a microstructure of the samples after compressive loading. It was found out that the Ti-6Al-4V with a globular microstructure is characterized by high strength and high plasticity (ensuring the highest strain energy) in comparison to alloy with a lamellar microstructure, whereas Ti6-Al-4V obtained with BEPM reveals the highest plastic flow stress with good plasticity at the same time. The microstructure observations reveal that a principal difference in high-strain-rate behavior of the tested materials could be explained by the nature of the boundaries between the structural components through which plastic deformation is transmitted: α/α boundaries prevail in the globular microstructure, while α/β boundaries prevail in the lamellar microstructure. The Ti-6Al-4V alloy obtained with BEPM due to a finer microstructure has a significantly better balance of strength and plasticity as compared with conventional Ti-6Al-4V alloy with a similar type of the lamellar microstructure.
In the present study titanium alloys were synthesized by the blended elemental press-andsinter
powder metallurgy approach using hydrogenated titanium powder. Experimental
investigation and modeling of the homogenization processes during synthesis were used to analyze
peculiarities of mass transfer and factors affecting diffusion. Processes of alloying elements
redistribution during chemical homogenization of powder blends are shown to be strongly
dependent on the chemical composition of the initial powders. Optimization of the processing
parameters allows to synthesize uniform, nearly-dense material with reduced grain size, at relatively
low temperatures and short time. This will provide improvement of mechanical properties
simultaneously with better cost-effectiveness of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.