In this study, we expand upon the biogeography of biological soil crusts (BSCs) and provide molecular insights into the microbial community and biochemical dynamics along the vertical BSC column structure, and across a transect of increasing BSC surface coverage in the central Mojave Desert, CA, United States. Next generation sequencing reveals a bacterial community profile that is distinct among BSCs in the southwestern United States. Distribution of major phyla in the BSC topsoils included Cyanobacteria (33 ± 8%), Proteobacteria (26 ± 6%), and Chloroflexi (12 ± 4%), with Phormidium being the numerically dominant genus. Furthermore, BSC subsurfaces contained Proteobacteria (23 ± 5%), Actinobacteria (20 ± 5%), and Chloroflexi (18 ± 3%), with an unidentified genus from Chloroflexi (AKIW781, order) being numerically dominant. Across the transect, changes in distribution at the phylum (p < 0.0439) and genus (p < 0.006) levels, including multiple biochemical and geochemical trends (p < 0.05), positively correlated with increasing BSC surface coverage. This included increases in (a) Chloroflexi abundance, (b) abundance and diversity of Cyanobacteria, (b) OTU-level diversity in the topsoil, (c) OTU-level differentiation between the topsoil and subsurface, (d) intracellular ATP abundances and catalase activities, and (e) enrichments in clay, silt, and varying elements, including S, Mn, Co, As, and Pb, in the BSC topsoils. In sum, these studies suggest that BSCs from regions of differing surface coverage represent early successional stages, which exhibit increasing bacterial diversity, metabolic activities, and capacity to restructure the soil. Further, these trends suggest that BSC successional maturation and colonization across the transect are inhibited by metals/metalloids such as B, Ca, Ti, Mn, Co, Ni, Mo, and Pb.
Developing countries face the challenge of growing their economy while reducing the negative environmental impacts of industry, thus requiring treatment technologies that are economical and effective. One recent technology developed in the tropical part of Mexico for the remediation of petroleum-contaminated soil was tested in this scale-up project at an industrial level, whereas previously it had only been tested at laboratory scale; 150 m 3 of bentonitic mud, contaminated with weathered hydrocarbons (3.4°API) at *50,000 ppm, was treated with 4 % Ca(OH) 2 , 4 % organic amendment, and a fine-root tropical grass. Hydrocarbons in soil and in leachates, as well as pH, and acute toxicity (Microtox) were monitored for 28.8 months. At the end of the study, basal respiration, root density, and earthworm toxicity were also measured. The hydrocarbon concentration in soil was reduced to 45 %, and toxicity was eliminated. Hydrocarbons in leachates were reduced to *1 mg/l, safe for human consumption. The pH adjustment depended on low soil moisture and was stabilized at 7.1. Intense revegetation resulted in good root density, within 90 % of nearby uncontaminated soil under pasture. Basal respiration was increased to levels comparable to uncontaminated tropical soils with agricultural use, pasture and gallery forest. At an industrial scale, strict moisture control was necessary for good pH stabilization. By controlling these conditions and applying this novel treatment process, it was possible to transform a heavily contaminated geological material into a non-toxic, fertile, soil-like substrate capable of maintaining a complete vegetative cover and microbial activity comparable to similar soils in a tropical environment.
Spacecraft assembly facilities are oligotrophic and low-humidity environments, which are routinely cleaned using alcohol wipes for benchtops and spacecraft materials, and alkaline detergents for floors. Despite these cleaning protocols, spacecraft assembly facilities possess a persistent, diverse, dynamic, and low abundant core microbiome, where the Acinetobacter are among the dominant members of the community. In this report, we show that several spacecraft-associated Acinetobacter metabolize or biodegrade the spacecraft cleaning reagents of ethanol (ethyl alcohol), 2-propanol (isopropyl alcohol), and Kleenol 30 (floor detergent) under ultraminimal conditions. Using cultivation and stable isotope labeling studies, we show that ethanol is a sole carbon source when cultivating in 0.2 × M9 minimal medium containing 26 μM Fe(NH4)2(SO4)2. Although cultures expectedly did not grow solely on 2-propanol, cultivations on mixtures of ethanol and 2-propanol exhibited enhanced plate counts at mole ratios of ≤0.50. In support, enzymology experiments on cellular extracts were consistent with oxidation of ethanol and 2-propanol by a membrane-bound alcohol dehydrogenase. In the presence of Kleenol 30, untargeted metabolite profiling on ultraminimal cultures of Acinetobacter radioresistens 50v1 indicated (1) biodegradation of Kleenol 30 into products including ethylene glycols, (2) the potential metabolism of decanoate (formed during incubation of Kleenol 30 in 0.2 × M9), and (3) decreases in the abundances of several hydroxy- and ketoacids in the extracellular metabolome. In ultraminimal medium (when using ethanol as a sole carbon source), A. radioresistens 50v1 also exhibits a remarkable survival against hydrogen peroxide (∼1.5-log loss, ∼108 colony forming units (cfu)/mL, 10 mM H2O2), indicating a considerable tolerance toward oxidative stress under nutrient-restricted conditions. Together, these results suggest that the spacecraft cleaning reagents may (1) serve as nutrient sources under oligotrophic conditions and (2) sustain extremotolerances against the oxidative stresses associated with low-humidity environments. In perspective, this study provides a plausible biochemical rationale to the observed microbial ecology dynamics of spacecraft-associated environments.
A soil that had been remediated by soil washing and chemical oxidation was evaluated, comparing it to an uncontaminated control soil ~30 m away. Profile descriptions were made of both soils over a 0–1 m depth, and samples were analyzed from each soil horizon. Samples were also analyzed from surface soil (0–30 cm). The control soil (a Fluvisol), had several unaltered A and C horizons, but the remediated soil presented only two poorly differentiated horizons, without structure and much lower in organic matter (<0.5%). In surface samples (0–30 cm), the bulk density, sand-silt-clay contents, field capacity, organic matter, and porosity were different with respect to the control (p > 0.05), and there was much greater compaction (3.04 vs. 1.10 MPa). However, the hydrocarbon concentration in the remediated soil was low (969.12 mg kg−1, average), and was not correlated to soil fertility parameters, such as porosity, organic matter, pH, moisture, field capacity or texture (R2 < 0.69), indicating that the impacts (such as compaction, lower field capacity and moisture content) were not due to residual hydrocarbons. Likewise, acute toxicity (Microtox) was not found, nor water repellency (penetration time < 5 s). It was concluded that the fertility deterioration in this soil was caused principally from the mixture of upper (loam) and lower (silty clay to silty clay loam) horizons during remediation treatment. Another important factor was the reduction in organic material, probably caused by the chemical oxidation treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.