This paper investigated the possibility of using clay characterization as a major tool to predict its suitability for bleaching of vegetable oil, namely, palm oil. The clay sample collected from Ibeshe deposit was characterized by X-ray diffraction (XRD). The results of the XRD showed that the clay is composed of dioctahedral kaolinite and dickite, silica, ilmenite, and merlinite. The compositional analysis using atomic absorption spectroscopy (AAS) showed that the Na 2 O : CaO ratio is 0.22, a value less than one and indicative of the absence of bentonite which presence, just like montmorillonite, confers bleaching activity to clays. Furthermore, the SiO 2 : Al 2 O 3 ratio of 1.12 (greater than one) is suggestive of a clay suitable not for bleaching but for zeolite development. Actual laboratory tests for bleaching performance evaluation confirmed the prediction above that the clay indeed has poor bleaching action as shown by percent colour reduction. The colour reduction for natural clay was 9.1%. This value only increased to 27.3% after 3M HCl activation, a value still very low for effective bleaching.
Highly ordered mesoporous materials are opening the door to new opportunities in catalysis due to their extraordinary intrinsic features. In this study, Nickel was supported on highly ordered mesoporous silica (KIT-6) by the wet impregnation method, and its performance in the hydrogenation of edible vegetable oil was compared with that of Ni/Activated carbon prepared using the same method as well as with unsupported Nickel. The degree of conversion for the 50 : 50 Ni/KIT-6 was 81%, as compared to the 29% obtained with 50 : 50 Ni/Activated carbons. The conversion was found to improve with an increase in mass of supported Nickel on KIT-6 thus 20 : 80 Ni/KIT-6 and 30 : 70 Ni/KIT-6 produced conversions of 71% and 74%, respectively. Key among the benefits of KIT-6 when used as a support material is the very high surface area, open framework of the 3D bicontinuous interconnected channels, and the well-ordered mesopores which bestow on it an advanced mass transfer characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.