A method of alumina production based on hydrochloric acid processing of kaolin clays from the East Siberian deposits was studied. Hydrochloric acid leaching was carried out at 160 °C. The leaching solution was subjected to a two-stage crystallization of aluminum chloride hexahydrate (ACH). The precipitated crystals were calcinated in air at a temperature above 800 °C to produce alumina. The main part of water and chlorine during thermal decomposition of ACH was removed at 400 °C. The influence of temperature and duration of ACH calcination on the residual chlorine content in alumina was studied. The optimal temperature of ACH calcination was 900 °C with a duration of 90 min. It was shown that the increase in calcination temperature contributed to the decrease in chlorine content in the final product. However, an increase in calcination temperature above 900 °C led to the transition of the well-soluble γ-Al2O3 phase to the insoluble α-Al2O3, which negatively affected the further electrolysis of aluminum. The size of alumina particles was not affected by the calcination mode. The rate of dissolution of the prototype Al2O3 in Na3AlF6 was higher than for the alumina obtained by the classical method. Alumina content, particle morphology, and particle size distribution for the obtained alumina were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and laser diffraction methods. The obtained alumina is suitable for aluminum production according to the studied characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.