Energy relaxation of the hot electron population generated by relativistic laser pulses in overdense plasma is analyzed for densities ranging from below to 1000 times solid density. It is predicted that longitudinal beam-plasma instabilities, which dominate energy transfer between hot electrons and plasma at lower densities, are suppressed by collisions beyond solid density. The respective roles of collisional energy transfer modes, i.e., direct collisions, diffusion, and resistive return current heating, are identified with respect to plasma density. The transition between the kinetic and the collisional regimes and scalings of collisional process are demonstrated by a fully integrated one-dimensional collisional particle simulation.
We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.
It is known from experiments that the radiated x-ray energy appears to exceed the calculated implosion kinetic energy and Spitzer resistive heating ͓C. Deeney et al., Phys. Rev. A 44, 6762 ͑1991͔͒ but possible mechanisms of the enhanced x-ray production are still being discussed. Enhanced plasma heating in smalldiameter wire arrays with decreased calculated kinetic energy was investigated, and a review of experiments with cylindrical arrays of 1-16 mm in diameter on the 1 MA Zebra generator is presented in this paper. The implosion and x-ray generation in cylindrical wire arrays with different diameters were compared to find a transition from a regime where thermalization of the kinetic energy is the prevailing heating mechanism to regimes with other dominant mechanisms of plasma heating. Loads of 3-8 mm in diameter generate the highest x-ray power at the Zebra generator. The x-ray power falls in 1-2 mm loads which can be linked to the lower efficiency of plasma heating with the lack of kinetic energy. The electron temperature and density of the pinches also depend on the array diameter. In small-diameter arrays, 1-3 mm in diameter, ablating plasma accumulates in the inner volume much faster than in loads of 12-16 mm in diameter. Correlated bubblelike implosions were observed with multiframe shadowgraphy. Investigation of energy balance provides evidence for mechanisms of nonkinetic plasma heating in Z pinches. Formation and evolution of bright spots in Z pinches were studied with a time-gated pinhole camera. A comparison of x-ray images with shadowgrams shows that implosion bubbles can initiate bright spots in the pinch. Features of the implosions in smalldiameter wire arrays are discussed to identify mechanisms of energy dissipation.
Abstract. In this paper we investigate the nonlinear development of the electron acoustic instability that can lead to the transfer of wave energy to frequencies just above the electron plasma frequency (0)pe) and to waves with approximately twice the electron plasma frequency (20)pe). Using plasma conditions in the upstream electron foreshock region based on data from the AMPTE-UKS spacecraft, an electron beam is considered in plasma containing a background of hot and cold electrons. This leads to the linear excitation of large-amplitude electron acoustic waves at frequencies between about 0.8 and 1.00)pe. A modified decay instability then excites waves in the spectrum just above 0)pe. This is followed by a second nonlinear coalescence process that causes the excitation of waves at frequencies just below 2C0pe. The linear and nonlinear properties of the electron acoustic instability are examined for observed conditions using analytical theory, particle-in-cell simulations, and Vlasov simulations. These results have application to observations made inside the electron foreshock region, as well as the polar cap and auroral zone, where plasma oscillations and waves at 2COpe are observed.
Simultaneous measurements of transmitted 500 kHz electric fields and of electron fluxes nonlinearly energized by those fields were made during the ionospheric flight of the rocket double payload OEDIPUS C. Given the local plasma parameters, 500 kHz corresponded to the whistler mode of cold-plasma propagation. As the separation between each payload end increased from 153 to 537 m, enhanced electron fluxes were detected at energies up to 20 keV, at the receiver end of the tether. Rf (radio frequency) electric fields created by the OEDIPUS-C transmitter have been computed for positions close to the whistler-mode group resonance cone and also for locations very close to the active dipoles. Test-particle trajectory tracings show that linear acceleration can account for the energy increases of electrons with starting energies up to about 100 eV. Neither resonant field-particle interactions of background energetic electrons nor strong turbulence of the background thermal particles explain the creation of sounder-accelerated electrons at 1–10 keV. The calculated magnitudes of the very near potentials, up to 550 V, point to acceleration by intense fields in the rf sheath region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.