Platelet activation by the coagulation protease thrombin is central to arterial thrombosis, a major cause of morbidity and mortality. We recently isolated a complementary DNA encoding the platelet thrombin receptor. The extracellular amino-terminal extension of this seven transmembrane domain receptor contains the putative thrombin cleavage site LDPR/S which is critical for receptor activation. By replacing this cleavage site with the cleavage site for enterokinase, we have created a functional enterokinase receptor. This result demonstrates that all information necessary for receptor activation is provided by receptor proteolysis. Nanomolar enterokinase concentrations are required to activate this new receptor, in contrast to the picomolar thrombin concentrations that activate wild-type thrombin receptor. We identified a receptor domain critical for thrombin's remarkable potency at its receptor. This domain resembles the carboxyl tail of the leech anticoagulant hirudin and functions by binding to thrombin's anion-binding exosite. Our studies thus define a model for thrombin-receptor interaction. The utility of this model was demonstrated by the design of novel thrombin inhibitors based on receptor peptides.
A secondary structure model for 23S ribosomal RNA has been constructed on the basis of comparative sequence data, including the complete sequences from E. coli. Bacillus stearothermophilis, human and mouse mitochondria and several partial sequences. The model has been tested extensively with single strand-specific chemical and enzymatic probes. Long range base-paired interactions organize the molecule into six major structural domains containing over 100 individual helices in all. Regions containing the sites of interaction with several ribosomal proteins and 5S RNA have been located. Segments of the 23S RNA structure corresponding to eucaryotic 5.8S and 25 RNA have been identified, and base paired interactions in the model suggest how they are attached to 28S RNA. Functionally important regions, including possible sites of contact with 30S ribosomal subunits, the peptidyl transferase center and locations of intervening sequences in various organisms are discussed. Models for molecular 'switching' of RNA molecules based on coaxial stacking of helices are presented, including a scheme for tRNA-23S RNA interaction.
Platelet activation by thrombin is critical for hemostasis and thrombosis. Structure-function studies with a recently cloned platelet thrombin receptor suggest that a hirudin-like domain in the receptor's extracellular amino terminal extension is a thrombin-binding determinant important for receptor activation. We now report that a peptide antiserum to this domain is a potent and specific antagonist of thrombin-induced platelet activation. This study demonstrates that the cloned platelet thrombin receptor is necessary for platelet activation by thrombin, and provides a strategy for developing blocking monoclonal antibodies of potential therapeutic value. (J. Clin. Invest. 1992.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.