Reliable data on the reactions of living organisms to titanium surfaces of implants based on microtomographic data are shown.
This study derives an expression of spectral energy density of acoustic phonons, as well as introducing the basic properties of anharmonic phonons and deriving an expression of their spectral energy density. The description of the vibrations of the atoms of the crystal lattice to this day cannot be considered completely finished, despite the existence of the theory of heat capacity at a constant volume (Debye theory). Debye's theory perfectly explains the law of cubic increase in heat capacity with temperature at low values of the latter. However, at high temperatures, the Debye model seems insufficiently substantiated. In particular, it is not clear for what physical reasons the value of the critical frequency was introduced - the phonon frequency, above which their appearance is impossible. In addition, the spectral energy density of anharmonism phonons is not considered, although this information is extremely important. It is the spectral composition of the anharmonic phonons that is necessary for an objective description of the phonon-phonon interaction in a crystal. In this paper, the principles are stated on the basis of which the spectral energy density of phonons can be calculated. The consideration is carried out for a simple cubic crystal lattice.
This study derives an expression of spectral energy density of acoustic phonons, as well as introducing the basic properties of anharmonic phonons and deriving an expression of their spectral energy density. The description of the vibrations of the atoms of the crystal lattice to this day cannot be considered completely finished, despite the existence of the theory of heat capacity at a constant volume (Debye theory). Debye's theory perfectly explains the law of cubic increase in heat capacity with temperature at low values of the latter. However, at high temperatures, the Debye model seems insufficiently substantiated. In particular, it is not clear for what physical reasons the value of the critical frequency was introduced - the phonon frequency, above which their appearance is impossible. In addition, the spectral energy density of anharmonism phonons is not considered, although this information is extremely important. It is the spectral composition of the anharmonic phonons that is necessary for an objective description of the phonon-phonon interaction in a crystal. In this paper, the principles are stated on the basis of which the spectral energy density of phonons can be calculated. The consideration is carried out for a simple cubic crystal lattice.
This study derives an expression of spectral energy density of acoustic phonons, as well as introducing the basic properties of anharmonic phonons and deriving an expression of their spectral energy density. The description of the vibrations of the atoms of the crystal lattice to this day cannot be considered completely finished, despite the existence of the theory of heat capacity at a constant volume (Debye theory). Debye's theory perfectly explains the law of cubic increase in heat capacity with temperature at low values of the latter. However, at high temperatures, the Debye model seems insufficiently substantiated. In particular, it is not clear for what physical reasons the value of the critical frequency was introduced - the phonon frequency, above which their appearance is impossible. In addition, the spectral energy density of anharmonism phonons is not considered, although this information is extremely important. It is the spectral composition of the anharmonic phonons that is necessary for an objective description of the phonon-phonon interaction in a crystal. In this paper, the principles are stated on the basis of which the spectral energy density of phonons can be calculated. The consideration is carried out for a simple cubic crystal lattice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.