Over 11,000 second meiotic metaphase spreads stained for the pericentromeric region have been studied quantitatively in male mice of 14 strains. The sex-chromosome constitution of a cell could be judged objectively if X and Y chromosomes and ploidy were all scored. A bias arose if only Y chromosomes and ploidy were scored but could be corrected statistically. There was no sign of other forms of bias. The original contiguity of X and Y second metaphases in vivo was very occasionally evident in the preparations. Most of the subhaploid aneuploid counts were assumed to be artifactual. The incidence of truly aneuploid second metaphases in 13 strains was estimated as 0.38 ± 0.12 %. The estimated average rate per chromosome was 0.019 ± 0.006 °/°, with a comparable order of magnitude for the sex chromosomes alone. Simultaneous aneuploidy of two or more chromosomes of the haploid set was estimated to be very rare. Of the spreads from 13 strains, 9.6 % were polyploid (2N, 3N, 4N) and showed most of the possible combinations of sex chromosomes. Nearly all the polyploid spreads were considered to arise by artifactual cell fusion at the time of second metaphase during the preparative technique, especially of the X and Y daughter-cell products of the first meiotic division. Other modes of origin (true polyploidy, accidental superposition of cells during preparation) were unlikely. The data could be accommodated by a statistical model with only four parameters. It allowed for artifactual fusion mainly between daughter cells but also between non-daughter cells, bias in one scoring method, and bias in the numbers of cells with given ploidy successfully mounted. Current techniques of chromosome preparation were thought to be wholly unsuitable for the recognition of true polyploidy. The artifactual origin of polyploid spreads was borne out by an absence of polyploid spermatozoa in 14 strains. There appeared to be a virtually constant transmission rate of paternal X and Y chromosomes from early meiosis to late blastocyst. The estimated rate of 49.05 ± 0.67 % with a Y chromosome also estimated the primary sex ratio. There was evidence of polymorphism in autosomal pericentromeric staining in 3 strains. No measure of the numbers of autosomes or sex chromosomes varied significantly between duplicate preparations or between duplicate males of a strain.
The origin of triploid (3N) 5j-day blastocysts in rabbits is inferred from the segregation of sex chromosomes and of an autosomal M-marker whose properties are described. 39 triploids and no tetraploids were scored among 1454 chromosomally scored blastocysts. A delay of 8 h between an ovulatory injection and subsequent insemination raised the estimated normal incidence of 0-59 % triploid blastocysts to 3-13 %. The increase is ascribed primarily to digyny (17 blastocysts), and to diandry probably mediated by dispermy (1 blastocyst). The triploid components of the two 2N/3N mosaics and the one 3N/6N were digynic. Neither superovulation nor insemination of excessive numbers of spermatozoa could be shown to give rise to triploid embryos. The diandric triploid was XYY, the first of this constitution apparently reported in the rabbit. There was some evidence that XX Y triploid blastocysts up to 5^-day gestation are more viable than XXX. In the 2N/3N mosaics each component had been entered by one spermatozoon, and the diploid component could not have been merely a contamination by diploid maternal somatic cells. In 2N/4N, 2N/4N/8N and 3N/6N mosaics, each polyploid component showed an exact doubling of the marker chromosome constitution of a component of lower ploidy; their origin is ascribed to doubling or redoubling of chromosome number in isolated embryonic cells. With earlier data included, 49-08 (+ S.B. 1-96) % of 652 diploid blastocysts were 1 7 . 460 non-experimental weaned rabbits were all diploid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.