The 4 July 2019 Mw6.4 and subsequent 6 July 2019 Mw7.1 Ridgecrest sequence earthquakes (CA, USA) ruptured orthogonal fault planes in a low slip rate (1 mm/year) dextral fault zone in the area linking the Eastern California Shear Zone and Walker Lane. This region accommodates nearly one fourth of plate boundary motion and has been proposed to be an incipient transform fault system that could eventually become the main tectonic boundary, replacing the San Andreas Fault. We investigate the rupture process of these events using a novel simultaneous kinematic slip method with joint inversion of high‐rate GNSS, strong motion, GNSS static offset, and Interferometric Synthetic Aperture Radar data. We model the Coulomb stress change to evaluate how the Mw6.4 earthquake may have affected the subsequent Mw7.1 event. Our findings suggest complex interactions between several fault structures, including dynamic and static triggering, and provide important context for regional seismic source characterization and hazard models.
The Newport‐Inglewood/Rose Canyon (NIRC) fault zone is an active strike‐slip fault system within the Pacific‐North American plate boundary in Southern California, located in close proximity to populated regions of San Diego, Orange, and Los Angeles counties. Prior to this study, the NIRC fault zone's continuity and geometry were not well constrained. Nested marine seismic reflection data with different vertical resolutions are employed to characterize the offshore fault architecture. Four main fault strands are identified offshore, separated by three main stepovers along strike, all of which are 2 km or less in width. Empirical studies of historical ruptures worldwide show that earthquakes have ruptured through stepovers with this offset. Models of Coulomb stress change along the fault zone are presented to examine the potential extent of future earthquake ruptures on the fault zone, which appear to be dependent on the location of rupture initiation and fault geometry at the stepovers. These modeling results show that the southernmost stepover between the La Jolla and Torrey Pines fault strands may act as an inhibitor to throughgoing rupture due to the stepover width and change in fault geometry across the stepover; however, these results still suggest that rupture along the entire fault zone is possible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.