Mathematical modeling is the process of designing a model of a real system and conducting experiments with it for the purpose of understanding the behavior of the system. Mathematical simulation is widely used for investigating and designing the compressors. Investigations of the processes of reciprocating compressors using mathematical models is an effective tool by high development of computing technique, which enables complicated problems to be solved with a minimal number of simplifying assumptions. A considerable number of previous works has been done on the mathematical modeling and simulation. The aim of the present work is to construct a model which is easy to understand, easy to detect errors in the process of building a model, and easy to compute a solution. This paper presents a simplified and effective mathematical model for the estimation of reciprocating compressor performance using personal computers that can be easily handled. The effect of operating parameters, speed and discharge pressure on thermodynamic behavior of compressor in working condition has been analyzed. The model has been developed for obtaining cylinder pressure, cylinder volume, cylinder temperature, valve lift and resultant torque at different crank angles and free air delivered and indicated power of the compressor. The model has been validated using experimental results.
This research article intends to discuss on the role and effects of dispersing solution combustion derived magnesia nanoflakes (~17 nm) within the biodiesel-diesel blends and pure diesel termed as nanofuels, in order to investigate the functional and pollutant emissions of a single-cylinder, electrically loaded, water-cooled diesel engine. The fuels focussed in this study are a blend of palm oil biodiesel and regular diesel dispersed with 50 ppm magnesia nanoflakes, and a pure diesel dispersed with 50 ppm magnesia nanoflakes. These fuels are compared with regular diesel which is considered as the base reference fuel, as well as with the biodiesel-diesel blend. From the experimental measurements, we inferred that the fuel density, viscous nature, and calorific value enhanced with the addition of nanoflakes. As for the engine performance attributes, the brake specific fuel consumption (BSFC) is lessened by 3.08% and 2.88% for particle dispersed biodiesel-diesel blend and particle dispersed diesel, respectively, whereas the brake thermal efficiency (BTE) enhances by 5.04% for particle dispersed biodiesel-diesel blend and 2.74% for particle dispersed diesel. With reference to emission, the unburnt hydrocarbon (UHC), white damp (CO), particulate exhaust or smoke, and the nitrogen oxides (NOx) are reduced by 9.51%, 18.71%, 13.64%, and 5.63%, respectively for particle dispersed biodiesel-diesel blend and 10.35%, 16.54%, 13.64%, 19.47%, and 4.70%, respectively for particle dispersed diesel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.