Schwann cells (SCs) are responsible for myelination of nerve fibers in the peripheral nervous system. Voltage-dependent K+ currents, including inactivating A-type (KA), delayed-rectifier (KD), and inward-rectifier (KIR) K+ channels, constitute the main conductances found in SCs. Physiological studies have shown that KD channels may play an important role in SC proliferation and that they are downregulated in the soma as proliferation ceases and myelination proceeds. Recent studies have begun to address the molecular identity of K+ channels in SCs. Here, we show that a large repertoire of K+ channel alpha subunits of the Shaker (Kv1.1, Kv1.2, Kv1.4, and Kv1.5), Shab (Kv2.1), and Shaw (Kv3.1b and Kv3.2) families is expressed in mouse SCs and sciatic nerve. We characterized heteromultimeric channel complexes that consist of either Kv1.5 and Kv1.2 or Kv1.5 and Kv1.4. In postnatal day 4 (P4) sciatic nerve, most of the Kv1.2 channel subunits are involved in heteromultimeric association with Kv1.5. Despite the presence of Kv1. 1 and Kv1.2 alpha subunits, the K+ currents were unaffected by dendrotoxin I (DTX), suggesting that DTX-sensitive channel complexes do not account substantially for SC KD currents. SC proliferation was found to be potently blocked by quinidine or 4-aminopyridine but not by DTX. Consistent with previous physiological studies, our data show that there is a marked downregulation of all KD channel alpha subunits from P1-P4 to P40 in the sciatic nerve. Our results suggest that KD currents are accounted for by a complex combinatorial activity of distinct K+ channel complexes and confirm that KD channels are involved in SC proliferation.
The origin of gold and silver deposits in the Southern Kamchatka ore district is considered in terms of a quantitative model of the dynamics of volcanogenic orthomagmatic fluid systems (VOFSs). This model takes into account structural, fluid dynamic, and thermophysical features of phase evolution in hydrothermal fluid systems differing in geometry and structural conditions of the discharge on the surfaces of volcanic edifices. It is shown that VOFSs forming sulfide-rich gold and silver deposits have no stationary impermeable caps in their discharge areas. Rather, for the most part, narrow regions of junction of phase fronts form in their interiors and migrate to the surface of volcanic edifices.
Three geothermal system types are predicted by the example of plane and conical fluid conductance zones with a cap horizon: (I) where the shallow decompression boiling zone does not arise at all because of large lateral heat loss, (II) where subsurface decompression boiling zones appear at the beginning of the heat wave formation and then such a zone is practically confined to the cap rocks, and (III) where a quasistationary decompression boiling zone forms after an initial instability period or approach to a thermal equilibrium. Fluctuations or oscillations of decompression boiling zone fronts within a range of depths can exist in type III systems.
A mathematical model is proposed to describe the dynamics of phase fronts in volcanogenic orthomagmatic fluid systems (VOFS). It has been shown that these systems require rather short geologic times to reach a quasi-stationary state. This process is accompanied by slow cooling and pressure decrease as the bubbling front within the intrusive body submerges and magmatic fluid discharge decreases. Decompression boiling zone seems to develop in near-surface VOFS part for a certain combination of such parameters as porosity, permeability, and upper boundary condition. In evolving VOFS the existence of this zone is ephemeral. However in areas of seismic tremor and in mixed hydrothermal systems this zone can be stable and can produce brines below the level of hydrotherm discharge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.