This study presents support vector machine based model for forecasting the runoff-rainfall events. A SVM based model is either implemented through Radial base or Gaussian based Kernel functions. SVM uses precipitation, temperature, sediment, rainfall, water level and discharge as input variable parameters. In this research the Sequential minimal optimization algorithm (SMO) has been implemented as an effective method for training support vector machines (SVMs) on classification tasks defined on large and sparse real time data sets. In this work, we generalized the SMO so that it can handle regression problem and by dividing datasets into test data and trained data performed future forecasting keeping four major evaluation parameters Root Mean Square Error (RMSE), Mean Absolute error (MAE), Mean Squared error (MSE) and correlation coefficient (CC). Study site for this research is Narmada basin reservoir hosahangabad catchment area and the experimental results on predicting the full natural flow of Narmada River indicates that support vector machine method performs far better and more accurate from the current forecasting practices (Artificial Neural Network).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.