To diagnose early faults as soon as possible, the feature extraction of vibration signals is very important in real engineering applications. Recently, the advanced signal processing-based weak feature extraction method has been becoming a hot research topic. The dominant mode of failure in rolling element bearings is spalling of the races or the rolling elements. Localized defects generate a series of impact vibrations every time whenever running roller passes over the surface of a defect. Therefore, vibration analysis is a conventional method for bearing fault detection. However, the measured vibration signals of rotating machinery often present nonlinear and non-stationary characteristics. This paper deals with the diagnosis of induction motor bearing based on vibration signal analysis. It provides a comparative study between traditional signal processing methods, such as Power Spectrum, Short Time Fourier Transform, Wavelet Transform, and Hilbert Transform. Performances of these techniques are assessed on real vibration data and compared for healthy and faulty bearing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.