We developed engineering models for forces on rigid, long rods with spherical, ogival, and conical noses that penetrated rate independent, elastic-perfectly plastic targets. The spherical and cylindrical, cavity-expansion approximations simplified the target analyses, so we obtained closed-form penetration equations. To verify our models, we performed terminal-ballistic experiments with 7.1-mm dia., 0.024 kg, marging steel rods and 152-mm dia., 6061-T651 aluminum targets. The models predicted penetration depths that were in reasonable agreement with the data for impact velocities between 0.4-1.4 km/s.
We developed an analytical model for the elastic-plastic response of a compressible material from the uniform expansion of a spherically symmetric cavity. Previous models consider the material as incompressible. Numerical results from both models showed the effect of compressibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.