The features of standing spin waves (SWs) excited during ferromagnetic resonance in three different one-dimensional magnonic crystals (MC) are intensively studied. The investigated magnonic crystals were: an array of air-spaced cobalt stripes, an array of air-spaced permalloy (Py) stripes, and a bi-component MC composed of alternating Co and Py stripes. All MC structures were made by etching technique from Co and Py thin films deposited onto Si substrates. Two configurations are considered with the in-plane external magnetic field applied parallel or perpendicular to the stripes. The supporting calculations are performed by the finite element method in the frequency domain. A number of intensive SW modes occurred in periodic structures under ferromagnetic resonance conditions as a consequence of standing spin waves excitation. These modes were analyzed theoretically in order to explain the origins of SW excitations. With the support of numerical calculations, we analyze also the possible scenarios for the occurrence of standing SWs in the investigated structures. It is demonstrated that the SW propagation length is an important factor conditioning the standing SW formation in MCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.