BackgroundIn the view of endemic avian influenza H9N2 infection in poultry, its zoonotic potential and emergence of antiviral resistance, two herbal plants, Ocimum sanctum and Acacia arabica, which are easily available throughout various geographical locations in India were taken up to study their antiviral activity against H9N2 virus. We evaluated antiviral efficacy of three different extracts each from leaves of O. sanctum (crude extract, terpenoid and polyphenol) and A. arabica (crude extract, flavonoid and polyphenol) against H9N2 virus using in ovo model.MethodsThe antiviral efficacy of different leaves extracts was systematically studied in three experimental protocols viz. virucidal (dose-dependent), therapeutic (time-dependent) and prophylactic (dose-dependent) activity employing in ovo model. The maximum non-toxic concentration of each herbal extracts of O. sanctum and A. arabica in the specific pathogen free embryonated chicken eggs was estimated and their antiviral efficacy was determined in terms of reduction in viral titres, measured by Haemagglutination (HA) and real time quantitative reverse transcription polymerase chain reaction (RT-qPCR) assays.ResultsAll the extracts of O. sanctum (crude extract, terpenoid and polyphenol) and A. arabica (crude extract, flavonoid and polyphenol) showed significant virucidal activity, however, crude extractocimum and terpenoidocimum showed highly significant to significant (p < 0.001–0.01) decrease in virus genome copy numbers with lowest dose tested. Similarly, therapeutic effect was observed in all three extracts of O. sanctum in comparison to the virus control, nevertheless, crude extractocimum and terpenoidocimum maintained this effect for longer period of time (up to 72 h post-incubation). None of the leaves extracts of A. arabica had therapeutic effect at 24 and 48 h post-incubation, however, only the crude extractacacia and polyphenolacacia showed delayed therapeutic effect (72 h post-inoculation). Prophylactic potential was observed in polyphenolacacia with highly significant antiviral activity compared to virus control (p < 0.001).ConclusionsThe crude extract and terpenoid isolated from the leaves of O. sanctum and polyphenol from A. arabica has shown promising antiviral properties against H9N2 virus. Future investigations are necessary to formulate combinations of these compounds for the broader antiviral activity against H9N2 viruses and evaluate them in chickens.
The neurotropic potential of the Epstein-Barr virus (EBV) was demonstrated quite recently; however, the mechanistic details are yet to be explored. Therefore, the effects of EBV infection in the neural milieu remain underexplored. Previous reports have suggested the potential role of virus-derived peptides in seeding the amyloid-β aggregation cascade, which lies at the center of Alzheimer's disease (AD) pathophysiology. However, no such study has been undertaken to explore the role of EBV peptides in AD. In our research, ∼100 EBV proteins were analyzed for their aggregation proclivity in silico using bioinformatic tools, followed by the prediction of 20S proteasomal cleavage sites using online algorithms NetChop ver. 3.1 and Pcleavage, thereby mimicking the cellular proteasomal cleavage activity generating short antigenic peptides of viral origin. Our study reports a high aggregate-forming tendency of a 12-amino-acid-long ( 146 SYKHVFLSAFVY 157 ) peptide derived from EBV glycoprotein M (EBV-gM). The in vitro analysis of aggregate formation done using Congo red and Thioflavin-S assays demonstrated dose-and timedependent kinetics. Thereafter, Raman spectroscopy was used to validate the formation of secondary structures (α helix, β sheets) in the aggregates. Additionally, cytotoxicity assay revealed that even a low concentration of these aggregates has a lethal effect on neuroblastoma cells. The findings of this study provide insights into the mechanistic role of EBV in AD and open up new avenues to explore in the future.
New criteria for the global asymptotic stability of two-dimensional (2-D) state-space digital filters subject to overflow nonlinearities are presented. A comparative evaluation of the present approach with an earlier one is made. Finally, the approach is extended to the global asymptotic stability of 2-D state-space digital filters with quantization nonlinearities.Index Terms-Asymptotic stability, digital filter wordlength effects, multidimensional digital filters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.