The design of digital VLSI circuits must take energy efficiency into consideration. Reducing the circuit’s power consumption, which has been a major issue since 2000, would increase the necessity for energy efficiency. Error-tolerant systems heavily rely on approximate computation methods to increase power efficiency. The key factors of the system’s overall power consumption and area computation are adders and multipliers, which are also crucial in approximate computing. High energy-efficiency adders can be used to create additional multipliers. In order to dramatically minimize power consumption, this work builds and implements 8×8 Dadda multipliers using 1 bit approximation adders. Calculation is sped up by using the Dadda multiplier. In turn, by reducing propagation latency, the suggested design lowers power consumption in digital CMOS circuitry. The proposed multiplier design with approximate adders, which was created in Verilog HDL, simulated in FPGA, and synthesized in FPGA platform, is implemented on an ASIC platform using Cadence 90 nm Technology. The Gaussian filter additionally employs the proposed Dadda multiplier for picture denoising in approximation adder-based image processing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.