The Gutman index of a connected graph is defined as Gut( ) = ∑ ̸ =V ( ) (V) ( , V), where ( ) and (V) are the degree of the vertices and V and ( , V) is the distance between vertices and V. The Detour Gutman index of a connected graph is defined as Gut( ) = ∑ ̸ =V ( ) (V) ( , V), where ( , V) is the longest distance between vertices and V. In this paper, the Gutman index and the Detour Gutman index of pseudo-regular graphs are determined.
For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of the degrees of vertices, and the second Zagreb index M2 is equal to the sum of the products of the degrees of pairs of adjacent vertices. Similarly, the hyper Zagreb index is defined as the sum of square of degree of vertices over all the edges. In this paper, First we obtain the hyper Zagreb indices of some derived graphs and the generalized transformations graphs. Finally, the hyper Zagreb indices of double, extended double, thorn graph, subdivision vertex corona of graphs, Splice and link graphs are obtained.
A topological index of a graph is a parameter related to the graph; it does not depend on labeling or pictorial representation of the graph. Graph operations plays a vital role to analyze the structure and properties of a large graph which is derived from the smaller graphs. The Zagreb indices are the important topological indices found to have the applications in Quantitative Structure Property Relationship(QSPR) and Quantitative Structure Activity Relationship(QSAR) studies as well. There are various study of different versions of Zagreb indices. One of the most important Zagreb indices is the reformulated Zagreb index which is used in QSPR study.
In this paper, we obtain the first reformulated Zagreb indices of some derived graphs such as double graph, extended double graph, thorn graph, subdivision vertex corona graph, subdivision graph and triangle parallel graph. In addition, we compute the first reformulated Zagreb indices of two important transformation graphs such as the generalized transformation graph and generalized Mycielskian graph.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.