difference in their electrical and optical properties between their amorphous and crystalline phases. Moreover, they can be switched (optically, electrically, or thermally) between phases reversibly (potentially >10 15 cycles) and quickly (nanoseconds or faster). [1][2][3] Both phases (and indeed intermediate phases between fully crystalline and fully amorphous) are also stable at room temperature for a time on the order of years. [4,5] All these properties have made phasechange materials extremely attractive for commercial data storage technologies, in the form of rewritable optical disks and nonvolatile electronic memories. [6][7][8] More recently, as a result of the rather unique properties that phase-change materials possesses, their use has been extended to a number of exciting emerging applications including neuromorphic computing, [9,10] integrated photonic memories [11,12] and, the focus of this work, reconfigurable optical metamaterials/metasurfaces, [13][14][15][16][17][18][19][20][21][22] which we here exploit for the realization of a new form of nonvolatile color display.Optical metasurfaces have great potential to generate color, and several different structures suited to this task have been suggested in the literature. [23][24][25][26][27][28][29][30][31] A common approach is to utilize metallic (or metal-dielectric) nanorods [26,27,30,31] or other lithographically patterned metal-dielectric nanostructures [24,28,29] that generate structural (i.e., noncolorant) color using plasmonic effects. Such approaches are in general though "fixed-by-design," meaning that colors and images are essentially written permanently into the metasurface by the specific nanostructures used. For display and electronic signage applications, however, the ability to change the displayed image or information in real time is required. Here we provide just such a capability by combining a metal-insulator-metal (MIM) resonant absorber type optical metasurface [32,33] with a thin layer of chalcogenide phase-change material (PCM), so providing the key attributes of nonvolatile color generation and dynamic reconfigurability, the latter achieved by turning the MIM resonance "on" and "off" by switching the PCM-layer between its crystalline and amorphous states. Nonvolatility is a particularly attractive feature offered by phase-change based displays, since no power is needed to retain an image once it is written into the phase-change layer/pixels. [34][35][36][37] Moreover, the displays can work using only ambient (natural or artificial) light, which can Chalcogenide phase-change materials, which exhibit a marked difference in their electrical and optical properties when in their amorphous and crystalline phases and can be switched between these phases quickly and repeatedly, are traditionally exploited to deliver nonvolatile data storage in the form of rewritable optical disks and electrical phase-change memories. However, exciting new potential applications are now emerging in areas such as integrated phase-change photonics, phase...
Atomically thin materials such as graphene are uniquely responsive to charge transfer from adjacent materials, making them ideal charge-transport layers in phototransistor devices. Effective implementation of organic semiconductors as a photoactive layer would open up a multitude of applications in biomimetic circuitry and ultra-broadband imaging but polycrystalline and amorphous thin films have shown inferior performance compared to inorganic semiconductors. Here, the long-range order in rubrene single crystals is utilized to engineer organic-semiconductor-graphene phototransistors surpassing previously reported photogating efficiencies by one order of magnitude. Phototransistors based upon these interfaces are spectrally selective to visible wavelengths and, through photoconductive gain mechanisms, achieve responsivity as large as 10 A W and a detectivity of 9 × 10 Jones at room temperature. These findings point toward implementing low-cost, flexible materials for amplified imaging at ultralow light levels.
Graphene oxide (GO) resistive memories offer the promise of low-cost environmentally sustainable fabrication, high mechanical flexibility and high optical transparency, making them ideally suited to future flexible and transparent electronics applications. However, the dimensional and temporal scalability of GO memories, i.e., how small they can be made and how fast they can be switched, is an area that has received scant attention. Moreover, a plethora of GO resistive switching characteristics and mechanisms has been reported in the literature, sometimes leading to a confusing and conflicting picture. Consequently, the potential for graphene oxide to deliver high-performance memories operating on nanometer length and nanosecond time scales is currently unknown. Here we address such shortcomings, presenting not only the smallest (50 nm), fastest (sub-5 ns), thinnest (8 nm) GO-based memory devices produced to date, but also demonstrate that our approach provides easily accessible multilevel (4-level, 2-bit per cell) storage capabilities along with excellent endurance and retention performance-all on both rigid and flexible substrates. Via comprehensive experimental characterizations backed-up by detailed atomistic simulations, we also show that the resistive switching mechanism in our Pt/GO/Ti/Pt devices is driven by redox reactions in the interfacial region between the top (Ti) electrode and the GO layer.
A highly effective laser thinning method is demonstrated to accurately control the thickness of MoTe2 layers. By utilizing the humidity present in the ambient atmosphere, multilayered MoTe2 films can be uniformly thinned all the way down to monolayer with layer‐by‐layer precision using an ultralow laser power density of 0.2 mW µm−2. Localized bandgap engineering is also performed in MoTe2, by creating regions with different bandgaps on the same film, enabling the formation of lateral homojunctions with sub‐200 nm spatial resolution. Field‐effect transistors fabricated from these thinned layers exhibit significantly improved electrical properties with an order of magnitude increase in on/off current ratios, along with enhancements in on‐current and field‐effect mobility values. Thinned devices also exhibit the fastest photoresponse (45 µs) for an MoTe2‐based visible photodetector reported to date, along with a high photoresponsivity. A highly sensitive monolayer MoTe2 photodetector is also reported. These results demonstrate the efficiency of the presented thinning approach in producing high‐quality MoTe2 films for electronic and optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.