Polymeric composites are used worldwide due to their enhanced applications in various sectors such as automotive, defense, aerospace, marine, and many others. Its lightweight and high‐strength applications make it convenient to use in high‐security fields such as defense and aerospace. Thus, it is essential to characterize composite materials for product development. Numerical simulation of composites has advantages over experimental characterization. The paper presents the mechanical behavior of polymer textile composites, employing geometrical modeling and a numerical simulation approach, under several loading conditions such as tension, compression, flexural, and impact loading. Failure mechanisms are also discussed with different failure modes and damage criterions. This review paper is limited to high‐strength fibers, such as carbon, Kevlar, and Glass fibers in unidirectional and woven formation. Various test specimens used in mechanical characterizations are presented with significant research summaries. Classification charts are also provided for a better understanding of the numerical simulation approach for characterizing the mechanical behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.