Cloud computing is a vast revolution in information technology (IT) that inhibits scalable and virtualized sources to end users with low infrastructure cost and maintenance. They also have much flexibility and these resources are supervised by various management organizations and provided over the Internet by known standards, formats, and networking protocols. Legacy protocols and underlying technologies consist of vulnerabilities and bugs which open doors for intrusion by network attackers. Attacks as distributed denial of service (DDoS) are one of most frequent attacks, which impose heavy damage and affect performance of the cloud. In this research work, DDoS attack detection is easily identified in an optimized way through a novel algorithm, namely, the proposed gradient hybrid leader optimization (GHLBO) algorithm. This optimized algorithm is responsible to train a deep stacked autoencoder (DSA) that detects the attack in an efficient manner. Here, fusion of features is carried out by deep maxout network (DMN) with an overlap coefficient, and augmentation of data is carried out by the oversampling process. Furthermore, the proposed GHLBO is generated by integrating the gradient descent and hybrid leader-based optimization (HLBO) algorithm. Also, this proposed method is assessed by various performance metrics, such as the true positive rate (TPR), true negative rate (TNR), and testing accuracy with values attained as 0.909, 0.909, and 0.917, accordingly.
Heart disease causes major death across the entire globe. Hence, heart disease prediction is a vital part of medical data analysis. Recently, various data mining and machine learning practices have been utilized to detect heart disease. However, these techniques are inadequate for effectual heart disease prediction due to the deficient test data. In order to progress the efficacy of detection performance, this research introduces the hybrid feature selection method for selecting the best features. Moreover, the missed value from the input data is filled with the quantile normalization and missing data imputation method. In addition, the best features relevant to disease detection are selected through the proposed hybrid Congruence coefficient Kumar–Hassebrook similarity. In addition, heart disease is predicted using SqueezeNet, which is tuned by the dwarf mongoose optimization algorithm (DMOA) that adapts the feeding aspects of dwarf mongoose. Moreover, the experimental result reveals that the DMOA-SqueezeNet method attained a maximum accuracy of 0.925, sensitivity of 0.926, and specificity of 0.918.
In coming up with of RCC frames typically the result of infill walls is neglected however this wall contributes to the rigidity and firmness of the structure. within the gift study we'll compare the unstable responses of a building by coming up with a infill wall with the assistance of equivalent diagonal strut methodology victimisation linear and non linear analysis additionally victimisation E-tabs code
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.