The method for calculating the specific conductivity tensor of an anisotropically conductive medium, proposed in this paper, distinguishes itself by the simplicity of physical measurements: it suffices to make an equally thick rectangle-shaped sample with four electrodes fixed on its sides and to take various measurements of current intensity and differences of potentials. The necessary mathematical calculations can be promptly performed, even without using a complex computing technique. The accuracy of the results obtained depends on the dimensions of the sample and on the ratios of the conductivity tensor components.
Abstract. This paper presents the method for estimating the parameters of a two parameter learning curve (LC). Different values of parameters and different sample sizes are used for this estimation. Based on the experimental data an adequate mathematically grounded LC model is proposed for a manual assembly process of automotive wiring harness. The model enables us to determine the LC parameters αε (slope coefficient) and the learning rate stabilization point xc, i.e. to completely restore LC and predict the production process. The propositions that ground the model application correctness are proved. The model adequacy is estimated, based on concrete production process monitoring data. The criterion that determines production process without stabilized learning rate is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.