TCP congestion-control is fairly inefficient in achieving high throughput in high-speed and dynamic-bandwidth environments. The main culprit is the slow bandwidth-search process used by TCP, which may take up to several thousands of round-trip times (RTTs) in searching for and acquiring the end-to-end spare bandwidth. Even the recently-proposed "highspeed" transport protocols may take hundreds of RTTs for this.In this paper, we design a new approach for congestion-control that allows TCP connections to boldly search for, and adapt to, the available bandwidth within a single RTT. Our approach relies on carefully orchestrated packet sending times and estimates the available bandwidth based on the delays experienced by these. We instantiate our new protocol, referred to as RAPID, using mechanisms that promote efficiency, queue-friendliness, and fairness. Our experimental evaluations on gigabit networks indicate that RAPID: (i) converges to an updated value of bandwidth within 1-4 RTTs; (ii) helps maintain fairly small queues; (iii) has negligible impact on regular TCP traffic; and (iv) exhibits excellent intra-protocol fairness among co-existing RAPID transfers. The rate-based design allows RAPID to be truly RTT-fair.
Abstract-The efficiency of TCP congestion-control in achieving high throughput is quite poor in high-speed, lossy, and dynamic-bandwidth environments. The main culprit is the slow bandwidth-search process used by TCP, which may take up to several thousands of round-trip times (RTTs) in searching for and acquiring the end-to-end spare bandwidth. While several alternate protocols have been proposed to speed up the search process, these still take hundreds of RTTs for doing so.In this paper, we argue that the sluggishness of existing protocols stems from two limiting design decisions that help a transfer remain non-intrusive to competing transfers. We argue that these legacy design decisions can be done away with if we limit the impact of probing for spare bandwidth. We use this idea to design a new approach for congestion-control that allows TCP connections to boldly search for, and adapt to, the available bandwidth within a single RTT. Our approach relies on carefully orchestrated packet sending times and estimates the available bandwidth based on the delays experienced by these. We instantiate our new protocol, referred to as RAPID, using mechanisms that promote efficiency as well as queue-friendliness. Our experimental evaluations indicate that RAPID: (i) converges to an updated value of bandwidth within 1-2 RTTs; (ii) helps maintain fairly small queues even in high-speed networks; and (iii) has negligible impact on regular TCP traffic. The benefits of our approach are especially significant on lossy links and those with rapidly-changing bandwidth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.