The p110δ subunit of phosphoinositide 3-kinase (PI(3)K) is selectively expressed in leukocytes and is critical for lymphocyte biology. Here we report three different germline, heterozygous, gain-of-function mutations in the PIK3CD gene encoding p110δ in fourteen patients from seven families. These patients presented with sinopulmonary infections, lymphadenopathy, nodular lymphoid hyperplasia and CMV and/or EBV viremia. Strikingly, naïve and central memory T cells were severely deficient, while senescent effector T cells were over-represented. In vitro, patient T cells exhibited increased phosphorylation of Akt and hyperactivation of mTOR, enhanced glucose uptake and terminal effector differentiation. Importantly, treatment with rapamycin to inhibit mTOR activity in vivo partially restored naïve T cells, largely rescued the in vitro T cell defects, and improved clinical course.
Cytotoxic T lymphocyte antigen–4 (CTLA-4) is an inhibitory receptor found on immune cells. The consequences of mutations in CTLA4 in humans are unknown. We identified germline heterozygous mutations in CTLA4 in subjects with severe immune dysregulation from four unrelated families. Whereas Ctla4 heterozygous mice have no obvious phenotype, human CTLA4 haploinsufficiency caused dysregulation of FoxP3+ regulatory T (Treg) cells, hyperactivation of effector T cells, and lymphocytic infiltration of target organs. Patients also exhibited progressive loss of circulating B cells, associated with an increase of predominantly autoreactive CD21lo B cells and accumulation of B cells in nonlymphoid organs. Inherited human CTLA4 haploinsufficiency demonstrates a critical quantitative role for CTLA-4 in governing T and B lymphocyte homeostasis.
Mutations in the LRBA gene (encoding the lipopolysaccharide-responsive and beige-like anchor protein) cause a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. The biological role of LRBA in immunologic disease is unknown. We found that patients with LRBA deficiency manifested a dramatic and sustained improvement in response to abatacept, a CTLA4 (cytotoxic T lymphocyte antigen-4)-immunoglobulin fusion drug. Clinical responses and homology of LRBA to proteins controlling intracellular trafficking led us to hypothesize that it regulates CTLA4, a potent inhibitory immune receptor. We found that LRBA colocalized with CTLA4 in endosomal vesicles and that LRBA deficiency or knockdown increased CTLA4 turnover, which resulted in reduced levels of CTLA4 protein in FoxP3(+) regulatory and activated conventional T cells. In LRBA-deficient cells, inhibition of lysosome degradation with chloroquine prevented CTLA4 loss. These findings elucidate a mechanism for CTLA4 trafficking and control of immune responses and suggest therapies for diseases involving the CTLA4 pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.