Mutations in the LRBA gene (encoding the lipopolysaccharide-responsive and beige-like anchor protein) cause a syndrome of autoimmunity, lymphoproliferation, and humoral immune deficiency. The biological role of LRBA in immunologic disease is unknown. We found that patients with LRBA deficiency manifested a dramatic and sustained improvement in response to abatacept, a CTLA4 (cytotoxic T lymphocyte antigen-4)-immunoglobulin fusion drug. Clinical responses and homology of LRBA to proteins controlling intracellular trafficking led us to hypothesize that it regulates CTLA4, a potent inhibitory immune receptor. We found that LRBA colocalized with CTLA4 in endosomal vesicles and that LRBA deficiency or knockdown increased CTLA4 turnover, which resulted in reduced levels of CTLA4 protein in FoxP3(+) regulatory and activated conventional T cells. In LRBA-deficient cells, inhibition of lysosome degradation with chloroquine prevented CTLA4 loss. These findings elucidate a mechanism for CTLA4 trafficking and control of immune responses and suggest therapies for diseases involving the CTLA4 pathway.
We synthesized and evaluated a novel class of chelator-free [ 64 Cu]-CuS nanoparticles (NPs) suitable for both PET imaging and as photothermal coupling agents for photothermal ablation.[ 64 Cu]-CuS NPs were simple to make, possessed excellent stability, and allowed robust noninvasive micro-PET imaging. Furthermore, CuS NPs displayed strong absorption in the nearinfrared (NIR) region (peak 930 nm), passive targeting prefers the tumor site, and mediated ablation of U87 tumor cells upon exposure to NIR light both in vitro and in vivo after either intratumoral or intravenous injection. The combination of small diameter (~11 nm diameter), strong NIR absorption, and integration of 64 Cu as a structural component makes [ 64 Cu]-CuS NPs ideally suited for multifunctional molecular imaging and therapy.
Owing to their unique optical property, small size, low cost of production and low cytotoxicity, CuS nanoparticles are promising new nanomaterials for cancer photothermal ablation therapy.
Polyethylene glycol (PEG)-coated (pegylated) gold nanoparticles (AuNPs) have been proposed as drug carriers and diagnostic contrast agents. However, the impact of particle characteristics on the biodistribution and pharmacokinetics of pegylated AuNPs is not clear. We investigated the effects of PEG molecular weight, type of anchoring ligand, and particle size on the assembly properties and colloidal stability of PEG-coated AuNPs. The pharmacokinetics and biodistribution of the most stable PEG-coated AuNPs in nude mice bearing subcutaneous A431 squamous tumors were further studied using 111 In-labeled AuNPs. AuNPs coated with thioctic acid (TA)-anchored PEG exhibited higher colloidal stability in phosphate-buffered saline in the presence of dithiothreitol than did AuNPs coated with monothiol-anchored PEG. AuNPs coated with high-molecular-weight (5000 Da) PEG were more stable than AuNPs coated with low-molecular-weight (2000 Da) PEG. Of the 20-nm, 40-nm, and 80-nm AuNPs coated with TA-terminated PEG 5000 , the 20-nm AuNPs exhibited the lowest uptake by reticuloendothelial cells and the slowest clearance from the body. Moreover, the 20-nm AuNPs coated with TA-terminated PEG 5000 showed significantly higher tumor uptake and extravasation from the tumor blood vessels than did the 40-and 80-nm AuNPs. Thus, 20-nm AuNPs coated with TA-terminated PEG 5000 are promising potential drug delivery vehicles and diagnostic imaging agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.