Solid-liquid phase transitions in Cd0.95-xMnxZn0.05Te alloys with x = 0.20 and 0.30 were investigated by differential thermal analysis (DTA). The heating/cooling rates were 5 and 10 K/min with a melt dwell time of 10, 30 and 60 minutes. Cd0.95-xMnxZn0.05Te (x=0.20, 0.30) single-crystal ingots were grown by the vertical Bridgman method guided by the DTA results.Te inclusions (1-20 micron diameter), typical of melt-grown CdTe and Cd(Zn)Te crystals, were observed in the ingots by infrared transmission microscopy. The measured X-ray diffraction patterns showed that all compositions are found to be in a single phase. Using current-voltage (I-V) measurements, the resistivity of the samples from each ingot was estimated to be about 10 5 Ohm•cm. The optical transmission analysis demonstrated that the band-gap of the investigated ingots increased from 1.77 to 1.88 eV with an increase of the MnTe content from 20 to 30 mol. %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.