. The nanotube phase exhibits a broad-band PL near 380 nm, in agreement with a published report of cathodoluminescence from a sample comprising > 90% nanotubes. This emission is almost 3 eV lower in energy than unrelaxed exciton states found in recent all-electron theories of nt-BN and h-BN and about 1.4 eV lower than the lowest (perturbed dark?) exciton seen in absorption of nt-BN. This may suggest that excitons in nt-BN vibrationally relax to self-trapped states before emitting, a path found in many wide-gap solids, especially in quasi-1-dimensional forms. Exciton emission from bulk single-crystal h-BN has been shown to occur from vibrationally unrelaxed (free-exciton) states. We suggest a hypothesis in which known nano-arch reconstructions on the surface of h-BN may provide the low-dimensional environment to make exciton self-trapping on the surfaces of h-BN likely. This allows consistent interpretaton of the surface-related 380 nm emission from h-BN powder within a half-nanotube self-trapped exciton hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.