Abstract. The Whisper instrument yields two data sets: (i) the electron density determined via the relaxation sounder, and (ii) the spectrum of natural plasma emissions in the frequency band 2-80 kHz. Both data sets allow for the threedimensional exploration of the magnetosphere by the Cluster mission. The total electron density can be derived unambiguously by the sounder in most magnetospheric regions, provided it is in the range of 0.25 to 80 cm −3 . The natural emissions already observed by earlier spacecraft are fairly well measured by the Whisper instrument, thanks to the digital technology which largely overcomes the limited telemetry allocation. The natural emissions are usually related to the plasma frequency, as identified by the sounder, and the combination of an active sounding operation and a passive survey operation provides a time resolution for the total density determination of 2.2 s in normal telemetry mode and 0.3 s in burst mode telemetry, respectively. Recorded on board the four spacecraft, the Whisper density data set forms a reference for other techniques measuring the electron population. We give examples of Whisper density data used to derive the vector gradient, and estimate the drift velocity of density structures. Wave observations are also of crucial interest for studying small-scale structures, as demonstrated in an example in the fore-shock region. Early results from the Whisper instrument are very encouraging, and demonstrate that the four-point Cluster measurements indeed bring a unique and completely novel view of the regions explored.Correspondence to: P. Décréau (pdecreau@cnrs-orleans.fr)
The joint frequency‐wavenumber spectrum is one of the basic quantities for analyzing plasma turbulence. It is shown how the full spectrum can be recovered from wavefields measured by two or more satellites via spectral methods based on wavelet transforms. Compared to standard cross‐correlation techniques, different branches in the dispersion relation can be resolved and quasi‐stationary wavefields can be accessed. Using this new approach, low frequency magnetic field data from the AMPTE‐UKS and AMPTE‐IRM spacecraft are investigated and the impact of nonlinear processes on wave propagation at the Earth's foreshock is revealed.
Abstract. The dynamics of electrons in the presence of E and B field gradients is considered. The results are applied to electron heating in quasi-perpendicular shocks. The main focus is on the transitions between adiabatic and overadiabatic heating and from perpendicular to oblique geometry. Contrary to previous results, it is shown that the divergence of initially close electron trajectories always takes place in the quasiperpendicular collisionless shock front. In the case of negligible electric field gradients at the shock front, the divergence rate depends only upon the magnetic field gradient and results in adiabatic heating. If the electric field gradient is not negligible, divergence rate depends on increasing electric field gradients. In this case, the divergence rate in the first part of the ramp will exceed the "adiabatic" divergence rate. This enhancement is significant for scales of the electric field of about 4-6 c/wv•. Under the conditions of the Earth's bow shock the magnetic field and particularly its gradients affect the electron trajectory divergence rate and thus the process of thermalization of electrons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.