Electroencephalogram (EEG) gives researchers a non-invasive way to record cerebral activity. It is a valuable tool that helps clinicians to diagnose various neurological disorders and brain diseases. Blinking or moving the eyes produces large electrical potential around the eyes known as electrooculogram. It is a non-cortical activity which spreads across the scalp and contaminates the EEG recordings. These contaminating potentials are called ocular artifacts (OAs). Rejecting contaminated trials causes substantial data loss, and restricting eye movements/blinks limits the possible experimental designs and may affect the cognitive processes under investigation. In this paper, a nonlinear time-scale adaptive denoising system based on a wavelet shrinkage scheme has been used for removing OAs from EEG. The time-scale adaptive algorithm is based on Stein's unbiased risk estimate (SURE) and a soft-like thresholding function which searches for optimal thresholds using a gradient based adaptive algorithm is used. Denoising EEG with the proposed algorithm yields better results in terms of ocular artifact reduction and retention of background EEG activity compared to non-adaptive thresholding methods and the JADE algorithm.
In this paper, a new filtering method is presented to remove the Rician noise from magnetic resonance images (MRI) acquired using single coil MRI acquisition system. This filter is based on nonlocal neutrosophic set (NLNS) approach of Wiener filtering. A neutrosophic set (NS), a part of neutrosophy theory, studies the origin, nature, and scope of neutralities, as well as their interactions with different ideational spectra. Now, we apply the neutrosophic set into image domain and define some concepts and operators for image denoising. First, the nonlocal mean is applied to the noisy MRI. The resultant image is transformed into NS domain, described using three membership sets: true (T), indeterminacy (I) and false (F). The entropy of the neutrosophic set is defined and employed to measure the indeterminacy. The -Wiener filtering operation is used on T and F to decrease the set indeterminacy and to remove the noise. The experiments have been conducted on simulated MR images from Brainweb database and clinical MR images. The results show that the NLNS Wiener filter produces better denoising results in terms of qualitative and quantitative measures compared with other denoising methods, such as classical Wiener filter, the anisotropic diffusion filter, the total variation minimization and the nonlocal means filter. The visual and the diagnostic quality of the denoised image are well preserved.
In this paper, a new filtering method based on neutrosophic set (NS) approach of wiener filter is presented to remove Rician noise from magnetic resonance image. A neutrosophic set, a part of neutrosophy theory, studies the origin, nature and scope of neutralities, as well as their interactions with different ideational spectra. Now, we apply the neutrosophic set into image domain and define some concepts and operators for image denoising. The image is transformed into NS domain, described using three membership sets: True (T), Indeterminacy (I) and False (F). The entropy of the neutrosophic set is defined and employed to measure the indeterminacy. The ω-wiener filtering operation is used on T and F to decrease the set indeterminacy and remove noise. The experiments have conducted on simulated Magnetic Resonance images (MRI) from Brainweb database and clinical MR images corrupted by Rician noise. The results show that the NS wiener filter produces better denoising results in terms of visual perception, qualitative and quantitative measures compared with other denoising methods, such as classical wiener filter, the anisotropic diffusion filter, the total variation minimization scheme and non local means filter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.