High above Earth’s surface, air temperatures occasionally increase suddenly, producing widespread effects on weather, air chemistry, and telecommunications.
The January 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption injected a relatively small amount of sulfur dioxide, but significantly more water into the stratosphere than previously seen in the modern satellite record. Here we show that the large amount of water resulted in large perturbations to stratospheric aerosol evolution. Our climate model simulation reproduces the observed enhanced water vapor at pressure levels ~30 hPa for three months. Compared with a simulation without a water injection, this additional source of water vapor increases hydroxide, which halves the sulfur dioxide lifetime. Subsequent coagulation creates larger sulfate particles that double the stratospheric aerosol optical depth. A seasonal forecast of volcanic plume transport in the southern hemisphere indicates this eruption will greatly enhance the aerosol surface area and water vapor near the polar vortex until at least October 2022, suggesting that there will continue to be an impact of this eruption on the climate system.
Atmospheric general circulation models (GCMs) are valuable tools to study large-scale atmospheric variability and its sensitivities to external perturbations (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.