The Whole Atmosphere Community Climate Model version 6 (WACCM6) is a major update of the whole atmosphere modeling capability in the Community Earth System Model (CESM), featuring enhanced physical, chemical and aerosol parameterizations. This work describes WACCM6 and some of the important features of the model. WACCM6 can reproduce many modes of variability and trends in the middle atmosphere, including the quasi‐biennial oscillation, stratospheric sudden warmings, and the evolution of Southern Hemisphere springtime ozone depletion over the twentieth century. WACCM6 can also reproduce the climate and temperature trends of the 20th century throughout the atmospheric column. The representation of the climate has improved in WACCM6, relative to WACCM4. In addition, there are improvements in high‐latitude climate variability at the surface and sea ice extent in WACCM6 over the lower top version of the model (CAM6) that comes from the extended vertical domain and expanded aerosol chemistry in WACCM6, highlighting the importance of the stratosphere and tropospheric chemistry for high‐latitude climate variability.
Accurate representation of global stratospheric aerosols from volcanic and nonvolcanic sulfur emissions is key to understanding the cooling effects and ozone losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO 2 emissions and plume altitudes for eruptions from 1990 to 2014 and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model. We used these combined with other nonvolcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD) and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at middle and high latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods.
Key developments have been made to the NCAR Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM‐X). Among them, the most important are the self‐consistent solution of global electrodynamics, and transport of O+ in the F‐region. Other ionosphere developments include time‐dependent solution of electron/ion temperatures, metastable O+ chemistry, and high‐cadence solar EUV capability. Additional developments of the thermospheric components are improvements to the momentum and energy equation solvers to account for variable mean molecular mass and specific heat, a new divergence damping scheme, and cooling by O(3P) fine structure. Simulations using this new version of WACCM‐X (2.0) have been carried out for solar maximum and minimum conditions. Thermospheric composition, density, and temperatures are in general agreement with measurements and empirical models, including the equatorial mass density anomaly and the midnight density maximum. The amplitudes and seasonal variations of atmospheric tides in the mesosphere and lower thermosphere are in good agreement with observations. Although global mean thermospheric densities are comparable with observations of the annual variation, they lack a clear semiannual variation. In the ionosphere, the low‐latitude E × B drifts agree well with observations in their magnitudes, local time dependence, seasonal, and solar activity variations. The prereversal enhancement in the equatorial region, which is associated with ionospheric irregularities, displays patterns of longitudinal and seasonal variation that are similar to observations. Ionospheric density from the model simulations reproduces the equatorial ionosphere anomaly structures and is in general agreement with observations. The model simulations also capture important ionospheric features during storms.
In 2017, western Canadian wildfires injected smoke into the stratosphere that was detectable by satellites for more than 8 months. The smoke plume rose from 12 to 23 kilometers within 2 months owing to solar heating of black carbon, extending the lifetime and latitudinal spread. Comparisons of model simulations to the rate of observed lofting indicate that 2% of the smoke mass was black carbon. The observed smoke lifetime in the stratosphere was 40% shorter than calculated with a standard model that does not consider photochemical loss of organic carbon. Photochemistry is represented by using an empirical ozone-organics reaction probability that matches the observed smoke decay. The observed rapid plume rise, latitudinal spread, and photochemical reactions provide new insights into potential global climate impacts from nuclear war.
[1] Micrometeorites that ablate in the lower thermosphere and upper mesosphere are thought to recondense into nanometer-sized smoke particles and then coagulate into larger dust particles. Previous studies with one-dimensional models have determined that the meteoric dust size distribution is sensitive to the background vertical velocity and have speculated on the importance of the mesospheric meridional circulation to the dust spatial distribution. We conduct the first three-dimensional simulations of meteoric dust using a general circulation model with sectional microphysics to study the distribution and characteristics of meteoric dust in the mesosphere and upper stratosphere. We find that the mesospheric meridional circulation causes a strong seasonal pattern in meteoric dust concentration in which the summer pole is depleted and the winter pole is enhanced. This summer pole depletion of dust particles results in fewer dust condensation nuclei (CN) than has traditionally been assumed in numerical simulations of polar mesospheric clouds (PMCs). However, the total number of dust particles present is still sufficient to account for PMCs if smaller particles can nucleate to form ice than is conventionally assumed. During winter, dust is quickly transported down to the stratosphere in the polar vortex where it may participate in the nucleation of sulfate aerosols, the formation of the polar CN layer, and the formation of polar stratospheric clouds (PSCs). These predictions of the seasonal variation and resulting large gradients in dust concentration should assist the planning of future campaigns to measure meteoric dust.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.