Accurate representation of global stratospheric aerosols from volcanic and nonvolcanic sulfur emissions is key to understanding the cooling effects and ozone losses that may be linked to volcanic activity. Attribution of climate variability to volcanic activity is of particular interest in relation to the post-2000 slowing in the rate of global average temperature increases. We have compiled a database of volcanic SO 2 emissions and plume altitudes for eruptions from 1990 to 2014 and developed a new prognostic capability for simulating stratospheric sulfate aerosols in the Community Earth System Model. We used these combined with other nonvolcanic emissions of sulfur sources to reconstruct global aerosol properties from 1990 to 2014. Our calculations show remarkable agreement with ground-based lidar observations of stratospheric aerosol optical depth (SAOD) and with in situ measurements of stratospheric aerosol surface area density (SAD). These properties are key parameters in calculating the radiative and chemical effects of stratospheric aerosols. Our SAOD calculations represent a clear improvement over available satellite-based analyses, which generally ignore aerosol extinction below 15 km, a region that can contain the vast majority of stratospheric aerosol extinction at middle and high latitudes. Our SAD calculations greatly improve on that provided for the Chemistry-Climate Model Initiative, which misses about 60% of the SAD measured in situ on average during both volcanically active and volcanically quiescent periods.
Summary (149 words of referenced text): 46The climate impact of aerosols is highly uncertain owing primarily to their poorly quantified 47 influence on cloud properties. During 2014-15, a fissure eruption in Holuhraun (Iceland) 48 emitted huge quantities of sulphur dioxide, resulting in significant reductions in liquid cloud 49 droplet size. Using satellite observations and detailed modelling, we estimate a global mean 50 radiative forcing from the resulting aerosol-induced cloud brightening for the time of the 51 eruption of around -0.2 W.m -2 . Changes in cloud amount or liquid water path are 52 undetectable, indicating that these aerosol-cloud indirect effects are modest. It supports the 53 idea that cloud systems are well buffered against aerosol changes as only impacts on cloud 54 effective radius appear relevant from a climate perspective, thus providing a strong constraint 55 on aerosol-cloud interactions. This result will reduce uncertainties in future climate 56 projections as we are able to reject the results from climate models with an excessive liquid 57 water path response. 58 59Main Text: (3103 words of referenced text, including concluding paragraph) 60 The 2014-15 eruption at Holuhraun (486 words of referenced text): 61Anthropogenic emissions that affect climate are not just confined to greenhouse gases. 62Sulphur dioxide and other pollutants form atmospheric aerosols that can scatter and absorb 63 sunlight and can influence the properties of clouds, modulating the Earth-atmosphere energy 64 balance. Aerosols act as cloud condensation nuclei (CCN); an increase in CCN translates into 65 a higher number of smaller, more reflective cloud droplets that scatter more sunlight back to 66 space 1 (the ÔfirstÕ indirect effect of aerosols). Smaller cloud droplets decrease the efficiency 67 of collision-coalescence processes that are pivotal in rain initiation, thus aerosol-influenced 68 clouds may retain more liquid water and extend coverage/lifetime 2,3 (the ÔsecondÕ or Ôcloud 69 lifetimeÕ indirect effect). Aerosols usually co-vary with key environmental variables making 70 it difficult to disentangle aerosol-cloud impacts from meteorological variability [4][5][6] . 71Additionally, clouds themselves are complex transient systems subject to dynamical 72 feedbacks (e.g. cloud top entrainment/evaporation, invigoration of convection) which 73 influence cloud response [7][8][9][10][11][12] . These aspects present great challenges in evaluating and 74 constraining aerosol-cloud interactions (ACI) in General Circulation Models (GCM) 13-17 , 75 with particular contentious debate surrounding the relative importance of these feedback 76 mechanisms. 77Nonetheless, anthropogenic aerosol emissions are thought to cool the Earth via indirect 78 effects 17 , but the uncertainty ranges from -1.2 to -0.0 W.m -2 (90% confidence interval) due to 79 i) a lack of characterization of the pre-industrial aerosol state 15,18,19 , and ii) model parametric 80 and structural errors in representing cloud responses to aerosol chan...
We present new insights into the evolution and interactions of stratospheric aerosol using an updated version of the Whole Atmosphere Community Climate Model (WACCM). Improved horizontal resolution, dynamics, and chemistry now produce an internally generated quasi‐biennial oscillation and significant improvements to stratospheric temperatures and ozone compared to observations. We present a validation of WACCM column ozone and climate calculations against observations. The prognostic treatment of stratospheric sulfate aerosols accurately represents the evolution of stratospheric aerosol optical depth and perturbations to solar and longwave radiation following the June 1991 eruption of Mount Pinatubo. We confirm the inclusion of interactive OH chemistry as an important factor in the formation and initial distribution of aerosol following large inputs of sulfur dioxide (SO2) to the stratosphere. We calculate that depletion of OH levels within the dense SO2 cloud in the first weeks following the Pinatubo eruption significantly prolonged the average initial e‐folding decay time for SO2 oxidation to 47 days. Previous observational and model studies showing a 30 day decay time have not accounted for the large (30–55%) losses of SO2 on ash and ice within 7–9 days posteruption and have not correctly accounted for OH depletion. We examine the variability of aerosol evolution in free‐running climate simulations due to meteorology, with comparison to simulations nudged with specified dynamics. We assess calculated impacts of volcanic aerosols on ozone loss with comparisons to observations. The completeness of the chemistry, dynamics, and aerosol microphysics in WACCM qualify it for studies of stratospheric sulfate aerosol geoengineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.