This article presents an approach to integrate a Pareto dominance concept into a comprehensive learning particle swarm optimizer~CLPSO! to handle multiple objective optimization problems. The multiobjective comprehensive learning particle swarm optimizer~MOCLPSO! also integrates an external archive technique. Simulation results~obtained using the codes made available on the Web at http://www.ntu.edu.sg/home/EPNSugan! on six test problems show that the proposed MOCLPSO, for most problems, is able to find a much better spread of solutions and faster convergence to the true Pareto-optimal front compared to two other multiobjective optimization evolutionary algorithms.
In this paper, we propose a Multiobjective Self-adaptive Differential Evolution algorithm with objective-wise learning strategies (OW-MOSaDE) to solve numerical optimization problems with multiple conflicting objectives. The proposed approach learns suitable crossover parameter values and mutation strategies for each objective separately in a multi-objective optimization problem. The performance of the proposed OW-MOSaDE algorithm is evaluated on a suit of 13 benchmark problems provided for the CEC2009 MOEA Special Session and Competition (http://www3.ntu.edu.sg/home/epnsugan/) on Performance Assessment of Constrained / Bound Constrained Multi-Objective Optimization Algorithms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.