In this paper, a novel method of the dual-wavelength (laser-induced breakdown spectroscopy LIBS) technique using a single laser system is proposed and demonstrated. Experiments are performed using a pulsed Nd3+ : YAG laser with a pair of 355–1064 nm and also with 532–1064 nm. The shorter wavelength laser is used for ablation and plasma formation, and the fundamental wavelength (1064 nm) is used for plasma re-excitation. The proposed dual-wavelength LIBS technique is used for lunar simulant samples under different ambient pressure conditions. Various characteristic parameters, such as the emission line-intensity enhancement, plasma temperature, lifetime and plasma area, are studied. Experimental studies clearly showed the emission line-intensity enhancement up to a factor of 3. Emission lifetime showed a longer sustained emission with an increase of up to 33% for the dual-wavelength approach. A theoretical simulation based on the hydrodynamic equations is also performed for dual-wavelength ablation and re-excitation. The estimated plasma temperature and ablation plume-front velocity clearly showed an increase in dual wavelength, which is in agreement with the experimental results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.