With the miniaturization of a solid down to nanometer scale, the elasticity, extensibility, Debye temperature, and specific heat capacity of the solid are no longer constant but change with variation of size. These quantities also change with the temperature of the measurement and the nature of the chemical bond involved. The mechanism behind the intriguing tunability and the interdependence of these quantities remain yet a high challenge. A set of analytical solutions is presented herewith showing that the observed trends could be reproduced by taking the fact of bond order deficiency into consideration. Agreement between predictions and observations clarifies that the shortened and strengthened surface bonds dictate intrinsically the observed tunability, yet atoms in the core interior remain as they are in the bulk. The thermally softening of a specimen arises from bond expansion and bond vibration due to the internal energy increases.
We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.