Cellular requirements for deoxyribonucleotide (dNTP) pools during DNA synthesis are related to ensuring of the accuracy of DNA copying during replication and repair. This paper covers some problems on the reactions of dNTP synthesis system in organs of animals against the treatment with DNA-damaging agents. Ribonucleoside diphosphate reductase (NDPR) is the key enzyme for the synthesis of dNTP, since it catalyses the reductive conversion of ribonucleotides to deoxyribonucleotides. The results obtained show that the rapid and transient increase in NDPR activity in animal organs occurs as cellular response against the treatment with DNA-damaging agents (SOS-type activation). We have also found the intensive radioprotector-stimulated activation of deoxyribonucleotide synthesis as well as DNA and protein synthesis in mice organs within 3 days after the administration of two radioprotectors, indralin and indometaphen, that provide the high animal survival. Our studies suggest that these effects are the most important steps in the protective mechanism of the radioprotectors and are responsible for the high animal survival.
The responses of the systems of synthesis of deoxyribonucleotides (dNTPs), DNA, and proteins in hematopoietic organs and liver of animals to γ -radiation, administration of radioprotectants and antioxidants as well as the dependence of these responses on the doses of radiation and drugs were studied. Radioprotectants of acute (indralin) and durable effects (indomethaphen) as well as natural ( α 2 -tocopherol) and synthetic antioxidants (ionol or 2,6-di-tert-butyl-4-methylphenol) efficient in survival test were used. Three stages could be recognized in the standard unspecific response of the studied systems to radiation: (1) immediate increase in ribonucleotide reductase activity in the tissues within the first 30 min as a part of the integrated SOS response to DNA damage, which activates dNTP synthesis; (2) inhibition of the synthesis of dNTPs, DNA, and proteins; and (3) restoring ribonucleotide reductase activity and integral increase in the production of dNTPs, DNA, and total protein, which is essential for the development of compensatory and restorative responses of the organism. The radioprotectants significantly increased ribonucleotide reductase activity, which increased intracellular concentrations of the four dNTP types in organs during radiation exposure and three following days. Within this period, ribonucleotide reductase activity was inhibited by 40-50% in animals not treated with radioprotectants as compared to control. Balanced high pools of dNTPs in the organs of radioprotectant-treated animals provided for high-performance repair of DNA damage. The radioprotectant-induced activation of dNTP synthesis during the development of compensatory and restorative responses provides for an earlier restoration of the cellular composition and functioning of the organs. Antioxidants stimulated the synthesis of dNTPs, DNA, and proteins in animal tissues in a strict dose interval. Their effect on the studied syntheses was dose-dependent: single or multiple long-term administration of high antioxidant doses inhibited synthesis of dNTPs, DNA, and proteins. Radioprotectants and antioxidants affected the pool of blood protein Fe 3+ -transferrin controlling the synthesis of iron-containing ribonucleotide reductase activity in hematopoietic organs, and hence, the irondependent stage in DNA synthesis-dNTP synthesis. Activation of protein synthesis in organs by the studied substances increased the pools of Fe 3+ -transferrin and Cu 2+ -ceruloplasmin in the blood, which activated dNTP and DNA synthesis. Activated synthesis of dNTP, DNA, and proteins in the organs and increased pools of studied plasma proteins underlay the formation of body resistance to DNA-damaging factors. BIOCHEMISTRY * % of dogs and mice survived 45 and 30 days after irradiation, respectively. ** n , number of mice in a group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.