Ex vivo lung perfusion (EVLP) is a platform to treat infected donor lungs with antibiotic therapy before lung transplantation. Human donor lungs that were rejected for transplantation because of clinical concern regarding infection were randomly assigned to two groups. In the antibiotic group (n = 8), lungs underwent EVLP for 12 h with high‐dose antibiotics (ciprofloxacin 400 mg or azithromycin 500 mg, vancomycin 15 mg/kg, and meropenem 2 g). In the control group (n = 7), lungs underwent EVLP for 12 h without antibiotics. A quantitative decrease in bacterial counts in bronchoalveolar lavage (BAL) was found in all antibiotic‐treated cases but in only two control cases. Perfusate endotoxin levels at 12 h were significantly lower in the antibiotic group compared with the control group. EVLP with broad‐spectrum antibiotic therapy significantly improved pulmonary oxygenation and compliance and reduced pulmonary vascular resistance. Perfusate endotoxin levels at 12 h were strongly correlated with levels of perfusates tumor necrosis factor α, IL‐1β and macrophage inflammatory proteins 1α and 1β at 12 h. In conclusion, EVLP treatment of infected donor lungs with broad‐spectrum antibiotics significantly reduced BAL bacterial counts and endotoxin levels and improved donor lung function.
Airway gene delivery is a promising strategy to treat patients with life-threatening lung diseases such as cystic fibrosis (CF). However, this strategy has to be evaluated in large animal preclinical studies in order to translate it to human applications. Because of anatomic and physiological similarities between the human and pig lungs, we utilized pig as a large animal model to examine the safety and efficiency of airway gene delivery with helper-dependent adenoviral vectors. Helper-dependent vectors carrying human CFTR or reporter gene LacZ were aerosolized intratracheally into pigs under bronchoscopic guidance. We found that the LacZ reporter and hCFTR transgene products were efficiently expressed in lung airway epithelial cells. The transgene vectors with this delivery can also reach to submucosal glands. Moreover, the hCFTR transgene protein localized to the apical membrane of both ciliated and nonciliated epithelial cells, mirroring the location of wild-type CF transmembrane conductance regulator (CFTR). Aerosol delivery procedure was well tolerated by pigs without showing systemic toxicity based on the limited number of pigs tested. These results provide important insights into developing clinical strategies for human CF lung gene therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.