The amplitude of the signal collected from the PbWO£ crystals of the CMS electromagnetic calorimeter is reconstructed by a digital filtering technique. The amplitude reconstruction has been studied with test beam data recorded from a fully equipped barrel supermodule. Results on the performance of the method are given, and test beam specific issues are investigated, together with conclusions about implementation of the method for CMS data taking.
We describe a system for creating personal clusters in user-space to support the submission and management of thousands of compute-intensive serial jobs to the network-connected compute resources on the NSF TeraGrid. The system implements a robust infrastructure that submits and manages job proxies across a distributed computing environment. These job proxies contribute resources to personal clusters created dynamically for a user ondemand. The personal clusters then adapt to the prevailing job load conditions at the distributed sites by migrating job proxies to sites expected to provide resources more quickly. Furthermore, the system allows multiple instances of these personal clusters to be created as containers for individual scientific experiments, allowing the submission environment to be customized for each instance. The version of the system described in this paper allows users to build large personal Condor and Sun Grid Engine clusters on the TeraGrid. Users then manage their scientific jobs, within each personal E. Walker ( ) cluster, with a single uniform interface using the feature-rich functionality found in these job management environments.
The energy resolution of the barrel part of the CMS Electromagnetic Calorimeter has been studied using electrons of 20 to 250 GeV in a test beam. The incident electron's energy was reconstructed by summing the energy measured in arrays of 3×3 or 5×5 channels. There was no significant amount of correlated noise observed within these arrays. For electrons incident at the centre of the studied 3×3 arrays of crystals, the mean stochastic term was measured to be 2.8% and the mean constant term to be 0.3%. The amount of the incident electrons' energy which is contained within the array depends on its position of incidence. The variation of the containment with position is corrected for using the distribution of the measured energy within the array. For uniform illumination of a crystal with 120 GeV electrons a resolution of 0.5% was achieved. The energy resolution meets the design goal for the detector.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.