The death of massive stars produces a variety of supernovae, which are linked to the structure of the exploding stars. The detection of several precursor stars of type II supernovae has been reported (see, for example, ref. 3), but we do not yet have direct information on the progenitors of the hydrogen-deficient type Ib and Ic supernovae. Here we report that the peculiar type Ib supernova SN 2006jc is spatially coincident with a bright optical transient that occurred in 2004. Spectroscopic and photometric monitoring of the supernova leads us to suggest that the progenitor was a carbon-oxygen Wolf-Rayet star embedded within a helium-rich circumstellar medium. There are different possible explanations for this pre-explosion transient. It appears similar to the giant outbursts of luminous blue variable stars (LBVs) of 60-100 solar masses, but the progenitor of SN 2006jc was helium- and hydrogen-deficient (unlike LBVs). An LBV-like outburst of a Wolf-Rayet star could be invoked, but this would be the first observational evidence of such a phenomenon. Alternatively, a massive binary system composed of an LBV that erupted in 2004, and a Wolf-Rayet star exploding as SN 2006jc, could explain the observations.
We present the results of the one‐year long observational campaign of the type II plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low‐luminosity, 56Ni‐poor type II plateau event so far and one of the best core‐collapse supernovae ever. The optical and near‐infrared spectra show narrow P‐Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about 1000 km s−1) of the ejected material. The optical light curves cover both the plateau phase and the late‐time radioactive tail, until about 380 d after core‐collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 d. In addition to optical observations, we also present near‐infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi‐analytic model, we infer for SN 2005cs a 56Ni mass of about 3 × 10−3 M⊙, a total ejected mass of 8–13 M⊙ and an explosion energy of about 3 × 1050 erg.
We present comprehensive photometric and spectroscopic observations of the faint transient SN 2008S discovered in the nearby galaxy NGC 6946. SN 2008S exhibited slow photometric evolution and almost no spectral variability during the first nine months, implying a long photon diffusion time and a high-density circumstellar medium. Its bolometric luminosity ( 10 41 erg s −1 at peak) is low with respect to most core-collapse supernovae but is comparable to the faintest Type II-P events. Our quasi-bolometric light curve extends to 300 d and shows a tail phase decay rate consistent with that of 56 Co. We propose that this is evidence for an explosion and formation of 56 Ni (0.0014 ± 0.0003 M ). Spectra of SN 2008S show intense emission lines of Hα, [Ca II] doublet and Ca II near-infrared (NIR) triplet, all without obvious P-Cygni absorption troughs. The large mid-infrared (MIR) flux detected shortly after explosion can be explained by a light echo from pre-existing dust. The late NIR flux excess is plausibly due to a combination of warm newly formed ejecta dust together with shock-heated dust in the circumstellar environment. We reassess the progenitor object detected previously in Spitzer archive images, supplementing this discussion with a model of the MIR spectral energy distribution. This supports the idea of a dusty, optically thick shell around SN 2008S with an inner radius of nearly 90 AU and outer radius of 450 AU, and an inferred heating source
The first 2 months of spectroscopic and photometric monitoring of the nearby Type Ic SN 2007gr are presented. The very early discovery (less than 5 days after the explosion) and the relatively short distance of the host galaxy motivated an extensive observational campaign. SN 2007gr shows an average peak luminosity but unusually narrow spectral lines and an almost flat photospheric velocity profile. The detection of prominent carbon features in the spectra is shown and suggests a wide range in carbon abundance in stripped-envelope supernovae. SN 2007gr may be an important piece in the puzzle of the observed diversity of CC SNe.
We present precise radial velocity observations of WASP-47, a star known to host a hot Jupiter, a distant Jovian companion, and, uniquely, two additional transiting planets in short-period orbits: a super-Earth in a ≈19 hr orbit, and a Neptune in a ≈9 day orbit. We analyze our observations from the HARPS-N spectrograph along with previously published data to measure the most precise planet masses yet for this system. When combined with new stellar parameters and reanalyzed transit photometry, our mass measurements place strong constraints on the compositions of the two small planets. We find that, unlike most other ultra-short-period planets, the inner planet, WASP-47 e, has a mass (6.83 ± 0.66 Å M ) and a radius (1.810 ± 0.027 Å R ) that are inconsistent with an Earth-like composition. Instead, WASP-47 e likely has a volatile-rich envelope surrounding an Earth-like core and mantle. We also perform a dynamical analysis to constrain the orbital inclination of WASP-47 c, the outer Jovian planet. This planet likely orbits close to the plane of the inner three planets, suggesting a quiet dynamical history for the system. Our dynamical constraints also imply that WASP-47 c is much more likely to transit than a geometric calculation would suggest. We calculate a transit probability for WASP-47 c of about 10%, more than an order of magnitude larger than the geometric transit probability of 0.6%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.