Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (≥1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.
We report the development of a new class of nucleic acid ligands that is comprised of Janus bases and the MPγPNA backbone and is capable of binding rCAG repeats in a sequence-specific and selective manner via, inference, bivalent H-bonding interactions. Individually, the interactions between ligands and RNA are weak and transient. However, upon the installation of a C-terminal thioester and an N-terminal cystine and the reduction of disulfide bond, they undergo template-directed native chemical ligation to form concatenated oligomeric products that bind tightly to the RNA template. In the absence of an RNA target, they self-deactivate by undergoing an intramolecular reaction to form cyclic products, rendering them inactive for further binding. The work has implications for the design of ultrashort nucleic acid ligands for targeting rCAG-repeat expansion associated with Huntington’s disease and a number of other related neuromuscular and neurodegenerative disorders.
An impressive array of antigene approaches has been developed for recognition of double helical DNA over the past three decades; however, few have exploited the 'Watson-Crick' base-pairing rules for establishing sequence-specific recognition. One approach employs peptide nucleic acid as a molecular reagent and strand invasion as a binding mode. However, even with integration of the latest conformationally-preorganized backbone design, such an approach is generally confined to sub-physiological conditions due to the lack of binding energy. Here we report the use of a class of shape-selective, bifacial nucleic acid recognition elements, namely Janus bases, for targeting double helical DNA or RNA. Binding occurs in a highly sequence-specific manner under physiologically relevant conditions. The work may provide a foundation for the design of oligonucleotides for targeting the secondary and tertiary structures of nucleic acid biopolymers.
Deviation from the Kramers' inverse viscosity dependence of rate, k ∝ 1/η, is often attributed to the presence of internal friction in proteins after Ansari et al. in 1992 showed that the folding rate could fit k ∝ 1/(η + σ) where σ is considered the internal friction. Several experimental and computational studies thereafter used fits to Ansari's equation or extrapolated the rate to η = 0 to estimate the internal friction in proteins and attributed its origin to various internal interactions such as ruggedness, dihedral rotation, and salt bridges. Here, we show that the above method to calculate the internal friction is incorrect since the rate in a simple model system without any internal friction yields a nonzero σ. Further investigation reveals that σ correlates with the relative deviation from Kramers' rate at different viscosities, where the deviation itself is caused due to the absence of full solvent friction rather than the presence of internal friction.
Intercalation into DNA is the interaction mode of some anthracycline antibiotics. Recently, this process's molecular mechanism was explored using the static free energy landscape. Here we explore the dynamical effects in the intercalation of proflavine into DNA by calculating the transmission coefficient κ-providing a measure of the departure from Transition State Theory for the reaction rate constant-by examination of the recrossing events at the transition state. For that purpose, we first found the accurate transition state of this complex system-as judged by a committor analysis-using a set of all-atom simulations of total length 6.3 millisecond. In a subsequent calculation of the transmission coefficient κ in another extensive set of simulations, the small value κ=0.1 was found, indicating a significant departure from TST. Comparison of this result with Grote-Hynes and Kramers theories shows that neither theory is able to capture this complex system's recrossing events; the source of this striking failure is discussed, as are related aspects of the mechanism. This study suggests that, for biomolecular processes similar to this, dynamical effects essential for the process are complex in nature and require novel approaches for their elucidation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.