The momentum diffusion of atoms in the field of two counter-propagating stochastic waves, one of which reproduces the other one with a certain time delay, has been studied. It is shown that the parameters of atom-field interaction, at which the light pressure force is maximum, correspond to the increasing momentum diffusion coefficient. In the case of high-intensity field described by the stochastic field model, the momentum diffusion coefficient was found to be proportional to the square root of the field autocorrelation time. The wave function describing the inner state of atoms is modeled, by using the Monte-Carlo method. Numerical calculations are carried out for cesium atoms.
We discuss basic concepts of the frequency-shifted feedback (FSF) laser and of our approach to modeling the physics of this device. Such apparatus offers potential for measuring incremental heights of surfaces with micrometer accuracy over meter or kilometer distances. We present experimental results, obtained using a Yb3+ fiber ring laser, that demonstrate the usefulness of such a device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.