No abstract
Purpose The production of nano-erythrosomes (NEs) by extrusion, which is considered the “gold standard”, has several disadvantages such as difficult equipment assembly, long procedure time, variable pressure, and problems with sterility. An alternative approach, using ultrasound probe, has been shown to overheat the sample and have suboptimal results compared to the extrusion method. In our study, we propose, develop, and test a new method for the fabrication of NEs based on shear force and then compare it to the “gold standard” extrusion approach. Methods The new method consists of mechanical shear force disruption of the hemoglobin-depleted erythrocyte ghost membranes, with the aid of a rotor stator based tissue homogenizer. Using the same batches of erythrocyte ghost membranes, we compared NEs produced by shear force to NEs produced by the well-established extrusion approach. NEs were characterized for yield, size, encapsulation efficiency, morphology, and stability by flow cytometry (FC), transmission electron microscopy (TEM), and zeta potential analysis. Results The shear force based process was easier to set up, significantly faster, had better sterility control, and decreased variability between batches. The shear force method generated NEs with the desired size distribution (particles diameter ~125 nm), which were morphologically and functionally equivalent to the NEs produced by extrusion. NEs produced by shear force were stable in terms of counts, size, and fluorescence intensity for 3 weeks at +4°C. Moreover, they showed colloidal stability and minimal influence to centrifugal stress, turbulence shock, and hemolytic potential. Conclusion The newly proposed shear force method allows faster, easier, and highly reproducible NEs production when compared to the conventional extrusion approach. The new setup allows simultaneous production of sterile batches of NEs, which have homogenous size distribution, good stability, and improved shelf life storage. The ability of the shear force method to process also high concentration samples indicates a future potential development of large-scale NEs production and industrial application, which has been a challenge for the extrusion method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.