A 4.1m long sediment core from the Eastern Arabian Sea (EAS) is studied using multiple geochemical proxies to understand the variation of productivity and terrigenous matter supply during the past 100 ka. The temporal variation in element concentration and fluxes of CaCO3, organic carbon (Corg) and Barium excess (Baexc), together, in general indicate a higher productivity during the cold climate and highest during the Last Glacial Maximum (LGM) in particular. This cold climate-increased productivity coupling may be attributed to the shoaling of nutricline due to enhanced convective mixing resulting from the intensified winter monsoon. Increased linear sedimentation rates and fluxes of Al, Fe, Mg, Ti, Cr, Cu, Zn, and V during the cold period also suggest increased input of terrigenous matter supporting intensified winter winds. However, the presence of large abundance of structurally unsupported elemental content (e.g.: Mg-86%, Fe-82% and Al-53%) indicate increased input of terrigenous material which was probably enhanced due to intense winter monsoon.
Major/crustal elements (Al, Ca, Mg, K, and Fe) and trace metals (Mn, Cr, Cu, Pb, Zn, and Ni) in atmospheric particulate matter at three sites in Goa (a coastal city in the Eastern Arabian Sea) were assessed during winter (December) and summer (March-May) months of 2015. A significant spatial and temporal variability was observed in PM10 mass concentration, crustal element, and trace metal composition at the sampling area (pristine, urban, and industrial locations). Using a diagnostic crustal element ratio (Fe/Al, Ca/Al, and Mg/Al), mineral dust components were characterized and found to show large spatial and temporal variability. The concentration levels of trace metals were further assessed for enrichment factor (EF) analysis, wherein reported elements were classified into two major groups. The first group consists of Cr, Cu, and Pb with 10< EF < 100 compared to continental crustal values (w.r.t. Al), suggesting a dominant contribution from anthropogenic sources with minor contribution from natural sources; the second group consists of Zn and Ni showing very high EF (>100)-these are solely derived from anthropogenic sources. Source identification for trace metals was further assessed based on principle component analysis (PCA). PCA highlights that the major contribution of trace metals is from anthropogenic emissions at all three locations. However, contributions from mineral dust were observed at pristine and urban locations during winter months. The reported data of trace metal concentrations in aerosols give baseline information on the atmospheric supply of micronutrients to the Arabian Sea, which has implications for the various surface ocean biogeochemical processes. Implications: This paper reports on crustal and trace metal composition and concentration level in atmospheric aerosols over a coastal city located on the Eastern Arabian Sea. This study highlights the role of various factors (meteorology and emission sources) controlling the abundance of metals over a coastal site. The contribution from various sources (anthropogenic vis-à-vis natural) has also been identified using enrichment factor analysis as well as principle component analysis. This study has implications for the supply of micronutrients to the coastal Arabian Sea, which can significantly impact various surface ocean biogeochemical processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.