Formation of stars is now believed to be tightly linked to the dynamical evolution of interstellar filaments in which they form. In this paper we analyze the density structure and kinematics of a small network of infrared dark filaments, SDC13, observed in both dust continuum and molecular line emission with the IRAM 30 m telescope. These observations reveal the presence of 18 compact sources amongst which the two most massive, MM1 and MM2, are located at the intersection point of the parsec-long filaments. The dense gas velocity and velocity dispersion observed along these filaments show smooth, strongly correlated, gradients. We discuss the origin of the SDC13 velocity field in the context of filament longitudinal collapse. We show that the collapse timescale of the SDC13 filaments (from 1 Myr to 4 Myr depending on the model parameters) is consistent with the presence of Class I sources in them, and argue that, on top of bringing more material to the centre of the system, collapse could generate additional kinematic support against local fragmentation, helping the formation of starless super-Jeans cores.
We present an unbiased spectral line survey toward the Galactic Centre (GC) quiescent giant molecular cloud (QGMC), G+0.693 using the GBT and IRAM 30 telescopes. Our study highlights an extremely rich organic inventory of abundant amounts of nitrogen (N)-bearing species in a source without signatures of star formation. We report the detection of 17 N-bearing species in this source, of which 8 are complex organic molecules (COMs). A comparison of the derived abundances relative to H 2 is made across various galactic and extragalactic environments. We conclude that the unique chemistry in this source is likely to be dominated by low-velocity shocks with X-rays/cosmic rays also playing an important role in the chemistry. Like previous findings obtained for O-bearing molecules, our results for N-bearing species suggest a more efficient hydrogenation of these species on dust grains in G+0.693 than in hot cores in the Galactic disk, as a consequence of the low dust temperatures coupled with energetic processing by X-ray/cosmic ray radiation in the GC.
Phosphorus is a crucial element in biochemistry, in particular the P−O bond, which is key in the formation of the backbone of deoxyribonucleic acid. So far, PO has only been detected toward the envelope of evolved stars, but never toward star-forming regions. We report the first detection of PO toward two massive star-forming regions, W51 e1/e2 and W3(OH), using data from the IRAM 30 m telescope. PN has also been detected toward the two regions. The abundance ratio PO/PN is 1.8 and 3 for W51 and W3(OH), respectively. Our chemical model indicates that the two molecules are chemically related and are formed via gas-phase ion-molecule and neutralneutral reactions during cold collapse. The molecules freeze out onto grains at the end of the collapse and desorb during the warm-up phase once the temperature reaches ∼35 K. Similar abundances of the two species are expected during a period of ∼5 × 10 4 yr at the early stages of the warm-up phase, when the temperature is in the range 35-90 K. The observed molecular abundances of 10 −10 are predicted by the model if a relatively high initial abundance of 5 × 10 −9 of depleted phosphorus is assumed.
Context. The increase in bandwidth and sensitivity of state-of-the-art radio observatories is providing a wealth of molecular data from nearby star-forming regions up to high-z galaxies. Analysing large data sets of spectral cubes requires efficient and user-friendly tools optimized for astronomers with a wide range of backgrounds. Aims. In this paper we present the detailed formalism at the core of the Spectral Line Identification and Modelling (SLIM) within the MAdrid Data CUBe Analysis (MADCUBA) package and their main data handling functionalities. These tools have been developed to visualize, analyze and model large spectroscopic data cubes. Methods. We present the highly interactive on-the-fly visualization and modelling tools of MADCUBA and SLIM, which includes an stand-alone spectroscopic database. The parameters stored therein are used to solve the full radiative transfer equation under Local Thermodynamic Equilibrium (LTE). SLIM provides tools to generate synthetic LTE model spectra based on input physical parameters of column density, excitation temperature, velocity, line width and source size. SLIM also provides an automatic fitting algorithm to obtain the physical parameters (with their associated errors) better fitting the observations. Synthetic spectra can be overlayed in the data cubes/spectra to easy the task of multi-molecular line identification and modelling. Results. We present the Java-based MADCUBA and its internal module SLIM packages which provide all the necessary tools for manipulation and analysis of spectroscopic data cubes. We describe in detail the spectroscopic fitting equations and make use of this tool to explore the breaking conditions and implicit errors of commonly used approximations in the literature. Conclusions. Easy-to-use tools like MADCUBA allow the users to derive the physical information from spectroscopic data without the need of resourcing to simple approximations. SLIM allows to use the full radiative transfer equation, and to interactively explore the space of physical parameters and associated uncertainties from observational data.
Context. The detection of complex organic molecules related with prebiotic chemistry in star-forming regions allows us to investigate how the basic building blocks of life are formed. Aims. Ethylene glycol (CH2OH)2 is the simplest sugar alcohol, and the reduced alcohol of the simplest sugar glycoladehyde (CH2OHCHO). We aim to study the molecular abundance and spatial distribution of (CH2OH)2, CH2OHCHO and other chemically related complex organic species (CH3OCHO, CH3OCH3, and C2H5OH) towards the chemically rich massive star-forming region G31.41+0.31. Methods. We have analyzed multiple single dish (Green Bank Telescope and IRAM 30m) and interferometric (Submillimeter Array) spectra towards G31.41+0.31, covering a range of frequencies from 45 to 258 GHz. We have fitted the observed spectra with a Local Thermodynamic Equilibrium synthetic spectra, and obtained excitation temperatures and column densities. We have compared our findings in G31.41+0.31 with the results found in other environments, including low-and high-mass star-forming regions, cold clouds and comets. Results. We have reported for the first time the presence of the aGg' conformer of (CH2OH)2 towards G31.41+0.31, detecting more than 30 unblended lines. We have detected also multiple transitions of other complex organic molecules such as CH2OHCHO, CH3OCHO, CH3OCH3 and C2H5OH. The high angular resolution images show that the (CH2OH)2 emission is very compact, peaking towards the maximum of the 1.3 mm continuum. These observations suggest that low abundance complex organic molecules, like (CH2OH)2 or CH2OHCHO, are good probes of the gas located closer to the forming stars. Our analysis confirms that (CH2OH)2 is more abundant than CH2OHCHO in G31.41+0.31, as previously observed in other interstellar regions. Comparing different star-forming regions we find evidence of an increase of the (CH2OH)2/CH2OHCHO abundance ratio with the luminosity of the source. The CH3OCH3/CH3OCHO and (CH2OH)2/C2H5OH ratios are nearly constant with luminosity. We have also found that the abundance ratios of pairs of isomers (CH2OHCHO/CH3OCHO and C2H5OH/CH3OCH3) decrease with the luminosity of the sources. Conclusions. The most likely explanation for the behavior of the (CH2OH)2/CH2OHCHO ratio is that these molecules are formed by different chemical formation routes not directly linked; although warm-up timescales effects and different formation and destruction efficiencies in the gas phase cannot be ruled out. The most likely formation route of (CH2OH)2 is by combination of two CH2OH radicals on dust grains. We also favor that CH2OHCHO is formed via the solid-phase dimerization of the formyl radical HCO. The interpretation of the observations also suggests a chemical link between CH3OCHO and CH3OCH3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.