Metal-organic chemical vapor deposition (MOCVD) and post-deposition arsenic diffusion processes were successfully employed to grow superconducting NdFe0.88Co0.12AsO thin films. First, by employing iron, cobalt and neodymium metal-organic precursors, a precursor film is grown by MOCVD on (001)-oriented LaAlO3 substrates. Subsequently, the arsenic is incorporated during an annealing of these precursor films in the presence of a NdFe0.9Co0.1AsO pellet. The chemical composition and crystallographic results indicate the formation of the cobalt-doped NdFeAsO polycrystalline phase. The secondary ion mass spectroscopy indicates a homogeneous arsenic diffusion process. The resistance and magnetization measurements as a function of temperature indicate a superconducting transition ∼15 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.