This paper researches the building principles and administration of virtual data processing centers based on hyper-converged systems over OpenFlow. We provide the implementation features of such virtual centers on the basis of software-defined networking that is managed by a dedicated controller (a server). We suggest the graph administration model of hyper-converged system resources compliant with required performance on the one hand and economic requirements on the other. Based on the proposed model, the implementation of a greedy control algorithm for the virtual data processing center over OpenFlow was examined. This algorithm assigns the requests to physical resources by using of dedicated server software. The advantages of such hyper-converged system model on performance issues were outlined, e.g., multi-threaded routing and security, elimination of the majority of current threats. We summarize the possibilities of transition to network infrastructure in these virtual data processing centers. Such infrastructure is focused on data and usage of blockchain technology providing high reliability and content protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.